ragflow / rag /app /paper.py
zxsipola123456's picture
Upload 769 files
ab2ded1 verified
raw
history blame
10.5 kB
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import re
from collections import Counter
from api.db import ParserType
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
from deepdoc.parser import PdfParser, PlainParser
import numpy as np
from rag.utils import num_tokens_from_string
class Pdf(PdfParser):
def __init__(self):
self.model_speciess = ParserType.PAPER.value
super().__init__()
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
callback(msg="OCR is running...")
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page,
callback
)
callback(msg="OCR finished.")
from timeit import default_timer as timer
start = timer()
self._layouts_rec(zoomin)
callback(0.63, "Layout analysis finished")
print("layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback(0.68, "Table analysis finished")
self._text_merge()
tbls = self._extract_table_figure(True, zoomin, True, True)
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self._concat_downward()
self._filter_forpages()
callback(0.75, "Text merging finished.")
# clean mess
if column_width < self.page_images[0].size[0] / zoomin / 2:
print("two_column...................", column_width,
self.page_images[0].size[0] / zoomin / 2)
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
for b in self.boxes:
b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
def _begin(txt):
return re.match(
"[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)",
txt.lower().strip())
if from_page > 0:
return {
"title": "",
"authors": "",
"abstract": "",
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes if
re.match(r"(text|title)", b.get("layoutno", "text"))],
"tables": tbls
}
# get title and authors
title = ""
authors = []
i = 0
while i < min(32, len(self.boxes)-1):
b = self.boxes[i]
i += 1
if b.get("layoutno", "").find("title") >= 0:
title = b["text"]
if _begin(title):
title = ""
break
for j in range(3):
if _begin(self.boxes[i + j]["text"]):
break
authors.append(self.boxes[i + j]["text"])
break
break
# get abstract
abstr = ""
i = 0
while i + 1 < min(32, len(self.boxes)):
b = self.boxes[i]
i += 1
txt = b["text"].lower().strip()
if re.match("(abstract|摘要)", txt):
if len(txt.split(" ")) > 32 or len(txt) > 64:
abstr = txt + self._line_tag(b, zoomin)
break
txt = self.boxes[i]["text"].lower().strip()
if len(txt.split(" ")) > 32 or len(txt) > 64:
abstr = txt + self._line_tag(self.boxes[i], zoomin)
i += 1
break
if not abstr:
i = 0
callback(
0.8, "Page {}~{}: Text merging finished".format(
from_page, min(
to_page, self.total_page)))
for b in self.boxes:
print(b["text"], b.get("layoutno"))
print(tbls)
return {
"title": title,
"authors": " ".join(authors),
"abstract": abstr,
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
re.match(r"(text|title)", b.get("layoutno", "text"))],
"tables": tbls
}
def chunk(filename, binary=None, from_page=0, to_page=100000,
lang="Chinese", callback=None, **kwargs):
"""
Only pdf is supported.
The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly.
"""
pdf_parser = None
if re.search(r"\.pdf$", filename, re.IGNORECASE):
if not kwargs.get("parser_config", {}).get("layout_recognize", True):
pdf_parser = PlainParser()
paper = {
"title": filename,
"authors": " ",
"abstract": "",
"sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page)[0],
"tables": []
}
else:
pdf_parser = Pdf()
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else:
raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {"docnm_kwd": filename, "authors_tks": rag_tokenizer.tokenize(paper["authors"]),
"title_tks": rag_tokenizer.tokenize(paper["title"] if paper["title"] else filename)}
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
doc["authors_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["authors_tks"])
# is it English
eng = lang.lower() == "english" # pdf_parser.is_english
print("It's English.....", eng)
res = tokenize_table(paper["tables"], doc, eng)
if paper["abstract"]:
d = copy.deepcopy(doc)
txt = pdf_parser.remove_tag(paper["abstract"])
d["important_kwd"] = ["abstract", "总结", "概括", "summary", "summarize"]
d["important_tks"] = " ".join(d["important_kwd"])
d["image"], poss = pdf_parser.crop(
paper["abstract"], need_position=True)
add_positions(d, poss)
tokenize(d, txt, eng)
res.append(d)
sorted_sections = paper["sections"]
# set pivot using the most frequent type of title,
# then merge between 2 pivot
bull = bullets_category([txt for txt, _ in sorted_sections])
most_level, levels = title_frequency(bull, sorted_sections)
assert len(sorted_sections) == len(levels)
sec_ids = []
sid = 0
for i, lvl in enumerate(levels):
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
sid += 1
sec_ids.append(sid)
print(lvl, sorted_sections[i][0], most_level, sid)
chunks = []
last_sid = -2
for (txt, _), sec_id in zip(sorted_sections, sec_ids):
if sec_id == last_sid:
if chunks:
chunks[-1] += "\n" + txt
continue
chunks.append(txt)
last_sid = sec_id
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
return res
"""
readed = [0] * len(paper["lines"])
# find colon firstly
i = 0
while i + 1 < len(paper["lines"]):
txt = pdf_parser.remove_tag(paper["lines"][i][0])
j = i
if txt.strip("\n").strip()[-1] not in "::":
i += 1
continue
i += 1
while i < len(paper["lines"]) and not paper["lines"][i][0]:
i += 1
if i >= len(paper["lines"]): break
proj = [paper["lines"][i][0].strip()]
i += 1
while i < len(paper["lines"]) and paper["lines"][i][0].strip()[0] == proj[-1][0]:
proj.append(paper["lines"][i])
i += 1
for k in range(j, i): readed[k] = True
txt = txt[::-1]
if eng:
r = re.search(r"(.*?) ([\\.;?!]|$)", txt)
txt = r.group(1)[::-1] if r else txt[::-1]
else:
r = re.search(r"(.*?) ([。?;!]|$)", txt)
txt = r.group(1)[::-1] if r else txt[::-1]
for p in proj:
d = copy.deepcopy(doc)
txt += "\n" + pdf_parser.remove_tag(p)
d["image"], poss = pdf_parser.crop(p, need_position=True)
add_positions(d, poss)
tokenize(d, txt, eng)
res.append(d)
i = 0
chunk = []
tk_cnt = 0
def add_chunk():
nonlocal chunk, res, doc, pdf_parser, tk_cnt
d = copy.deepcopy(doc)
ck = "\n".join(chunk)
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
d["image"], poss = pdf_parser.crop(ck, need_position=True)
add_positions(d, poss)
res.append(d)
chunk = []
tk_cnt = 0
while i < len(paper["lines"]):
if tk_cnt > 128:
add_chunk()
if readed[i]:
i += 1
continue
readed[i] = True
txt, layouts = paper["lines"][i]
txt_ = pdf_parser.remove_tag(txt)
i += 1
cnt = num_tokens_from_string(txt_)
if any([
layouts.find("title") >= 0 and chunk,
cnt + tk_cnt > 128 and tk_cnt > 32,
]):
add_chunk()
chunk = [txt]
tk_cnt = cnt
else:
chunk.append(txt)
tk_cnt += cnt
if chunk: add_chunk()
for i, d in enumerate(res):
print(d)
# d["image"].save(f"./logs/{i}.jpg")
return res
"""
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], callback=dummy)