Spaces:
Paused
Paused
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import copy | |
import re | |
from collections import Counter | |
from api.db import ParserType | |
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks | |
from deepdoc.parser import PdfParser, PlainParser | |
import numpy as np | |
from rag.utils import num_tokens_from_string | |
class Pdf(PdfParser): | |
def __init__(self): | |
self.model_speciess = ParserType.PAPER.value | |
super().__init__() | |
def __call__(self, filename, binary=None, from_page=0, | |
to_page=100000, zoomin=3, callback=None): | |
callback(msg="OCR is running...") | |
self.__images__( | |
filename if not binary else binary, | |
zoomin, | |
from_page, | |
to_page, | |
callback | |
) | |
callback(msg="OCR finished.") | |
from timeit import default_timer as timer | |
start = timer() | |
self._layouts_rec(zoomin) | |
callback(0.63, "Layout analysis finished") | |
print("layouts:", timer() - start) | |
self._table_transformer_job(zoomin) | |
callback(0.68, "Table analysis finished") | |
self._text_merge() | |
tbls = self._extract_table_figure(True, zoomin, True, True) | |
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes]) | |
self._concat_downward() | |
self._filter_forpages() | |
callback(0.75, "Text merging finished.") | |
# clean mess | |
if column_width < self.page_images[0].size[0] / zoomin / 2: | |
print("two_column...................", column_width, | |
self.page_images[0].size[0] / zoomin / 2) | |
self.boxes = self.sort_X_by_page(self.boxes, column_width / 2) | |
for b in self.boxes: | |
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip()) | |
def _begin(txt): | |
return re.match( | |
"[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)", | |
txt.lower().strip()) | |
if from_page > 0: | |
return { | |
"title": "", | |
"authors": "", | |
"abstract": "", | |
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes if | |
re.match(r"(text|title)", b.get("layoutno", "text"))], | |
"tables": tbls | |
} | |
# get title and authors | |
title = "" | |
authors = [] | |
i = 0 | |
while i < min(32, len(self.boxes)-1): | |
b = self.boxes[i] | |
i += 1 | |
if b.get("layoutno", "").find("title") >= 0: | |
title = b["text"] | |
if _begin(title): | |
title = "" | |
break | |
for j in range(3): | |
if _begin(self.boxes[i + j]["text"]): | |
break | |
authors.append(self.boxes[i + j]["text"]) | |
break | |
break | |
# get abstract | |
abstr = "" | |
i = 0 | |
while i + 1 < min(32, len(self.boxes)): | |
b = self.boxes[i] | |
i += 1 | |
txt = b["text"].lower().strip() | |
if re.match("(abstract|摘要)", txt): | |
if len(txt.split(" ")) > 32 or len(txt) > 64: | |
abstr = txt + self._line_tag(b, zoomin) | |
break | |
txt = self.boxes[i]["text"].lower().strip() | |
if len(txt.split(" ")) > 32 or len(txt) > 64: | |
abstr = txt + self._line_tag(self.boxes[i], zoomin) | |
i += 1 | |
break | |
if not abstr: | |
i = 0 | |
callback( | |
0.8, "Page {}~{}: Text merging finished".format( | |
from_page, min( | |
to_page, self.total_page))) | |
for b in self.boxes: | |
print(b["text"], b.get("layoutno")) | |
print(tbls) | |
return { | |
"title": title, | |
"authors": " ".join(authors), | |
"abstract": abstr, | |
"sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if | |
re.match(r"(text|title)", b.get("layoutno", "text"))], | |
"tables": tbls | |
} | |
def chunk(filename, binary=None, from_page=0, to_page=100000, | |
lang="Chinese", callback=None, **kwargs): | |
""" | |
Only pdf is supported. | |
The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly. | |
""" | |
pdf_parser = None | |
if re.search(r"\.pdf$", filename, re.IGNORECASE): | |
if not kwargs.get("parser_config", {}).get("layout_recognize", True): | |
pdf_parser = PlainParser() | |
paper = { | |
"title": filename, | |
"authors": " ", | |
"abstract": "", | |
"sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page)[0], | |
"tables": [] | |
} | |
else: | |
pdf_parser = Pdf() | |
paper = pdf_parser(filename if not binary else binary, | |
from_page=from_page, to_page=to_page, callback=callback) | |
else: | |
raise NotImplementedError("file type not supported yet(pdf supported)") | |
doc = {"docnm_kwd": filename, "authors_tks": rag_tokenizer.tokenize(paper["authors"]), | |
"title_tks": rag_tokenizer.tokenize(paper["title"] if paper["title"] else filename)} | |
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) | |
doc["authors_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["authors_tks"]) | |
# is it English | |
eng = lang.lower() == "english" # pdf_parser.is_english | |
print("It's English.....", eng) | |
res = tokenize_table(paper["tables"], doc, eng) | |
if paper["abstract"]: | |
d = copy.deepcopy(doc) | |
txt = pdf_parser.remove_tag(paper["abstract"]) | |
d["important_kwd"] = ["abstract", "总结", "概括", "summary", "summarize"] | |
d["important_tks"] = " ".join(d["important_kwd"]) | |
d["image"], poss = pdf_parser.crop( | |
paper["abstract"], need_position=True) | |
add_positions(d, poss) | |
tokenize(d, txt, eng) | |
res.append(d) | |
sorted_sections = paper["sections"] | |
# set pivot using the most frequent type of title, | |
# then merge between 2 pivot | |
bull = bullets_category([txt for txt, _ in sorted_sections]) | |
most_level, levels = title_frequency(bull, sorted_sections) | |
assert len(sorted_sections) == len(levels) | |
sec_ids = [] | |
sid = 0 | |
for i, lvl in enumerate(levels): | |
if lvl <= most_level and i > 0 and lvl != levels[i - 1]: | |
sid += 1 | |
sec_ids.append(sid) | |
print(lvl, sorted_sections[i][0], most_level, sid) | |
chunks = [] | |
last_sid = -2 | |
for (txt, _), sec_id in zip(sorted_sections, sec_ids): | |
if sec_id == last_sid: | |
if chunks: | |
chunks[-1] += "\n" + txt | |
continue | |
chunks.append(txt) | |
last_sid = sec_id | |
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser)) | |
return res | |
""" | |
readed = [0] * len(paper["lines"]) | |
# find colon firstly | |
i = 0 | |
while i + 1 < len(paper["lines"]): | |
txt = pdf_parser.remove_tag(paper["lines"][i][0]) | |
j = i | |
if txt.strip("\n").strip()[-1] not in "::": | |
i += 1 | |
continue | |
i += 1 | |
while i < len(paper["lines"]) and not paper["lines"][i][0]: | |
i += 1 | |
if i >= len(paper["lines"]): break | |
proj = [paper["lines"][i][0].strip()] | |
i += 1 | |
while i < len(paper["lines"]) and paper["lines"][i][0].strip()[0] == proj[-1][0]: | |
proj.append(paper["lines"][i]) | |
i += 1 | |
for k in range(j, i): readed[k] = True | |
txt = txt[::-1] | |
if eng: | |
r = re.search(r"(.*?) ([\\.;?!]|$)", txt) | |
txt = r.group(1)[::-1] if r else txt[::-1] | |
else: | |
r = re.search(r"(.*?) ([。?;!]|$)", txt) | |
txt = r.group(1)[::-1] if r else txt[::-1] | |
for p in proj: | |
d = copy.deepcopy(doc) | |
txt += "\n" + pdf_parser.remove_tag(p) | |
d["image"], poss = pdf_parser.crop(p, need_position=True) | |
add_positions(d, poss) | |
tokenize(d, txt, eng) | |
res.append(d) | |
i = 0 | |
chunk = [] | |
tk_cnt = 0 | |
def add_chunk(): | |
nonlocal chunk, res, doc, pdf_parser, tk_cnt | |
d = copy.deepcopy(doc) | |
ck = "\n".join(chunk) | |
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english) | |
d["image"], poss = pdf_parser.crop(ck, need_position=True) | |
add_positions(d, poss) | |
res.append(d) | |
chunk = [] | |
tk_cnt = 0 | |
while i < len(paper["lines"]): | |
if tk_cnt > 128: | |
add_chunk() | |
if readed[i]: | |
i += 1 | |
continue | |
readed[i] = True | |
txt, layouts = paper["lines"][i] | |
txt_ = pdf_parser.remove_tag(txt) | |
i += 1 | |
cnt = num_tokens_from_string(txt_) | |
if any([ | |
layouts.find("title") >= 0 and chunk, | |
cnt + tk_cnt > 128 and tk_cnt > 32, | |
]): | |
add_chunk() | |
chunk = [txt] | |
tk_cnt = cnt | |
else: | |
chunk.append(txt) | |
tk_cnt += cnt | |
if chunk: add_chunk() | |
for i, d in enumerate(res): | |
print(d) | |
# d["image"].save(f"./logs/{i}.jpg") | |
return res | |
""" | |
if __name__ == "__main__": | |
import sys | |
def dummy(prog=None, msg=""): | |
pass | |
chunk(sys.argv[1], callback=dummy) | |