ragflow / rag /llm /chat_model.py
zxsipola123456's picture
Upload 769 files
ab2ded1 verified
raw
history blame
39.5 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
from dashscope import Generation
from abc import ABC
from openai import OpenAI
import openai
from ollama import Client
from volcengine.maas.v2 import MaasService
from rag.nlp import is_english
from rag.utils import num_tokens_from_string
from groq import Groq
import os
import json
import requests
import asyncio
class Base(ABC):
def __init__(self, key, model_name, base_url):
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf)
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, response.usage.total_tokens
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
stream=True,
**gen_conf)
for resp in response:
if not resp.choices:continue
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
ans += resp.choices[0].delta.content
total_tokens = (
(
total_tokens
+ num_tokens_from_string(resp.choices[0].delta.content)
)
if not hasattr(resp, "usage") or not resp.usage
else resp.usage.get("total_tokens",total_tokens)
)
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
yield ans
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class GptTurbo(Base):
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
if not base_url: base_url="https://api.openai.com/v1"
super().__init__(key, model_name, base_url)
class MoonshotChat(Base):
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
if not base_url: base_url="https://api.moonshot.cn/v1"
super().__init__(key, model_name, base_url)
class XinferenceChat(Base):
def __init__(self, key=None, model_name="", base_url=""):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
key = "xxx"
super().__init__(key, model_name, base_url)
class DeepSeekChat(Base):
def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
if not base_url: base_url="https://api.deepseek.com/v1"
super().__init__(key, model_name, base_url)
class AzureChat(Base):
def __init__(self, key, model_name, **kwargs):
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
self.model_name = model_name
class BaiChuanChat(Base):
def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
if not base_url:
base_url = "https://api.baichuan-ai.com/v1"
super().__init__(key, model_name, base_url)
@staticmethod
def _format_params(params):
return {
"temperature": params.get("temperature", 0.3),
"max_tokens": params.get("max_tokens", 2048),
"top_p": params.get("top_p", 0.85),
}
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
extra_body={
"tools": [{
"type": "web_search",
"web_search": {
"enable": True,
"search_mode": "performance_first"
}
}]
},
**self._format_params(gen_conf))
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, response.usage.total_tokens
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
extra_body={
"tools": [{
"type": "web_search",
"web_search": {
"enable": True,
"search_mode": "performance_first"
}
}]
},
stream=True,
**self._format_params(gen_conf))
for resp in response:
if not resp.choices:continue
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
ans += resp.choices[0].delta.content
total_tokens = (
(
total_tokens
+ num_tokens_from_string(resp.choices[0].delta.content)
)
if not hasattr(resp, "usage")
else resp.usage["total_tokens"]
)
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class QWenChat(Base):
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
import dashscope
dashscope.api_key = key
self.model_name = model_name
def chat(self, system, history, gen_conf):
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
response = Generation.call(
self.model_name,
messages=history,
result_format='message',
**gen_conf
)
ans = ""
tk_count = 0
if response.status_code == HTTPStatus.OK:
ans += response.output.choices[0]['message']['content']
tk_count += response.usage.total_tokens
if response.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, tk_count
return "**ERROR**: " + response.message, tk_count
def chat_streamly(self, system, history, gen_conf):
from http import HTTPStatus
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
tk_count = 0
try:
response = Generation.call(
self.model_name,
messages=history,
result_format='message',
stream=True,
**gen_conf
)
for resp in response:
if resp.status_code == HTTPStatus.OK:
ans = resp.output.choices[0]['message']['content']
tk_count = resp.usage.total_tokens
if resp.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
yield ans
else:
yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**"
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
class ZhipuChat(Base):
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
self.client = ZhipuAI(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf
)
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, response.usage.total_tokens
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
ans = ""
tk_count = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
stream=True,
**gen_conf
)
for resp in response:
if not resp.choices[0].delta.content:continue
delta = resp.choices[0].delta.content
ans += delta
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
tk_count = resp.usage.total_tokens
if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
class OllamaChat(Base):
def __init__(self, key, model_name, **kwargs):
self.client = Client(host=kwargs["base_url"])
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
options = {}
if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
response = self.client.chat(
model=self.model_name,
messages=history,
options=options,
keep_alive=-1
)
ans = response["message"]["content"].strip()
return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
options = {}
if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
ans = ""
try:
response = self.client.chat(
model=self.model_name,
messages=history,
stream=True,
options=options,
keep_alive=-1
)
for resp in response:
if resp["done"]:
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
ans += resp["message"]["content"]
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
class LocalAIChat(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
class LocalLLM(Base):
class RPCProxy:
def __init__(self, host, port):
self.host = host
self.port = int(port)
self.__conn()
def __conn(self):
from multiprocessing.connection import Client
self._connection = Client(
(self.host, self.port), authkey=b"infiniflow-token4kevinhu"
)
def __getattr__(self, name):
import pickle
def do_rpc(*args, **kwargs):
for _ in range(3):
try:
self._connection.send(pickle.dumps((name, args, kwargs)))
return pickle.loads(self._connection.recv())
except Exception as e:
self.__conn()
raise Exception("RPC connection lost!")
return do_rpc
def __init__(self, key, model_name):
from jina import Client
self.client = Client(port=12345, protocol="grpc", asyncio=True)
def _prepare_prompt(self, system, history, gen_conf):
from rag.svr.jina_server import Prompt,Generation
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
return Prompt(message=history, gen_conf=gen_conf)
def _stream_response(self, endpoint, prompt):
from rag.svr.jina_server import Prompt,Generation
answer = ""
try:
res = self.client.stream_doc(
on=endpoint, inputs=prompt, return_type=Generation
)
loop = asyncio.get_event_loop()
try:
while True:
answer = loop.run_until_complete(res.__anext__()).text
yield answer
except StopAsyncIteration:
pass
except Exception as e:
yield answer + "\n**ERROR**: " + str(e)
yield num_tokens_from_string(answer)
def chat(self, system, history, gen_conf):
prompt = self._prepare_prompt(system, history, gen_conf)
chat_gen = self._stream_response("/chat", prompt)
ans = next(chat_gen)
total_tokens = next(chat_gen)
return ans, total_tokens
def chat_streamly(self, system, history, gen_conf):
prompt = self._prepare_prompt(system, history, gen_conf)
return self._stream_response("/stream", prompt)
class VolcEngineChat(Base):
def __init__(self, key, model_name, base_url):
"""
Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
Assemble ak, sk, ep_id into api_key, store it as a dictionary type, and parse it for use
model_name is for display only
"""
self.client = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
self.volc_ak = eval(key).get('volc_ak', '')
self.volc_sk = eval(key).get('volc_sk', '')
self.client.set_ak(self.volc_ak)
self.client.set_sk(self.volc_sk)
self.model_name = eval(key).get('ep_id', '')
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
req = {
"parameters": {
"min_new_tokens": gen_conf.get("min_new_tokens", 1),
"top_k": gen_conf.get("top_k", 0),
"max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
"temperature": gen_conf.get("temperature", 0.1),
"max_new_tokens": gen_conf.get("max_tokens", 1000),
"top_p": gen_conf.get("top_p", 0.3),
},
"messages": history
}
response = self.client.chat(self.model_name, req)
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, response.usage.total_tokens
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
tk_count = 0
try:
req = {
"parameters": {
"min_new_tokens": gen_conf.get("min_new_tokens", 1),
"top_k": gen_conf.get("top_k", 0),
"max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
"temperature": gen_conf.get("temperature", 0.1),
"max_new_tokens": gen_conf.get("max_tokens", 1000),
"top_p": gen_conf.get("top_p", 0.3),
},
"messages": history
}
stream = self.client.stream_chat(self.model_name, req)
for resp in stream:
if not resp.choices[0].message.content:
continue
ans += resp.choices[0].message.content
if resp.choices[0].finish_reason == "stop":
tk_count = resp.usage.total_tokens
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
class MiniMaxChat(Base):
def __init__(
self,
key,
model_name,
base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
):
if not base_url:
base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
self.base_url = base_url
self.model_name = model_name
self.api_key = key
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = json.dumps(
{"model": self.model_name, "messages": history, **gen_conf}
)
try:
response = requests.request(
"POST", url=self.base_url, headers=headers, data=payload
)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
if response["choices"][0]["finish_reason"] == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, response["usage"]["total_tokens"]
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = json.dumps(
{
"model": self.model_name,
"messages": history,
"stream": True,
**gen_conf,
}
)
response = requests.request(
"POST",
url=self.base_url,
headers=headers,
data=payload,
)
for resp in response.text.split("\n\n")[:-1]:
resp = json.loads(resp[6:])
text = ""
if "choices" in resp and "delta" in resp["choices"][0]:
text = resp["choices"][0]["delta"]["content"]
ans += text
total_tokens = (
total_tokens + num_tokens_from_string(text)
if "usage" not in resp
else resp["usage"]["total_tokens"]
)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class MistralChat(Base):
def __init__(self, key, model_name, base_url=None):
from mistralai.client import MistralClient
self.client = MistralClient(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
try:
response = self.client.chat(
model=self.model_name,
messages=history,
**gen_conf)
ans = response.choices[0].message.content
if response.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, response.usage.total_tokens
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
try:
response = self.client.chat_stream(
model=self.model_name,
messages=history,
**gen_conf)
for resp in response:
if not resp.choices or not resp.choices[0].delta.content:continue
ans += resp.choices[0].delta.content
total_tokens += 1
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
yield ans
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class BedrockChat(Base):
def __init__(self, key, model_name, **kwargs):
import boto3
self.bedrock_ak = eval(key).get('bedrock_ak', '')
self.bedrock_sk = eval(key).get('bedrock_sk', '')
self.bedrock_region = eval(key).get('bedrock_region', '')
self.model_name = model_name
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
def chat(self, system, history, gen_conf):
from botocore.exceptions import ClientError
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
if "max_tokens" in gen_conf:
gen_conf["maxTokens"] = gen_conf["max_tokens"]
_ = gen_conf.pop("max_tokens")
if "top_p" in gen_conf:
gen_conf["topP"] = gen_conf["top_p"]
_ = gen_conf.pop("top_p")
try:
# Send the message to the model, using a basic inference configuration.
response = self.client.converse(
modelId=self.model_name,
messages=history,
inferenceConfig=gen_conf
)
# Extract and print the response text.
ans = response["output"]["message"]["content"][0]["text"]
return ans, num_tokens_from_string(ans)
except (ClientError, Exception) as e:
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
def chat_streamly(self, system, history, gen_conf):
from botocore.exceptions import ClientError
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
if "max_tokens" in gen_conf:
gen_conf["maxTokens"] = gen_conf["max_tokens"]
_ = gen_conf.pop("max_tokens")
if "top_p" in gen_conf:
gen_conf["topP"] = gen_conf["top_p"]
_ = gen_conf.pop("top_p")
if self.model_name.split('.')[0] == 'ai21':
try:
response = self.client.converse(
modelId=self.model_name,
messages=history,
inferenceConfig=gen_conf
)
ans = response["output"]["message"]["content"][0]["text"]
return ans, num_tokens_from_string(ans)
except (ClientError, Exception) as e:
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
ans = ""
try:
# Send the message to the model, using a basic inference configuration.
streaming_response = self.client.converse_stream(
modelId=self.model_name,
messages=history,
inferenceConfig=gen_conf
)
# Extract and print the streamed response text in real-time.
for resp in streaming_response["stream"]:
if "contentBlockDelta" in resp:
ans += resp["contentBlockDelta"]["delta"]["text"]
yield ans
except (ClientError, Exception) as e:
yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
yield num_tokens_from_string(ans)
class GeminiChat(Base):
def __init__(self, key, model_name,base_url=None):
from google.generativeai import client,GenerativeModel
client.configure(api_key=key)
_client = client.get_default_generative_client()
self.model_name = 'models/' + model_name
self.model = GenerativeModel(model_name=self.model_name)
self.model._client = _client
def chat(self,system,history,gen_conf):
if system:
history.insert(0, {"role": "user", "parts": system})
if 'max_tokens' in gen_conf:
gen_conf['max_output_tokens'] = gen_conf['max_tokens']
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
for item in history:
if 'role' in item and item['role'] == 'assistant':
item['role'] = 'model'
if 'content' in item :
item['parts'] = item.pop('content')
try:
response = self.model.generate_content(
history,
generation_config=gen_conf)
ans = response.text
return ans, response.usage_metadata.total_token_count
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "user", "parts": system})
if 'max_tokens' in gen_conf:
gen_conf['max_output_tokens'] = gen_conf['max_tokens']
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
for item in history:
if 'role' in item and item['role'] == 'assistant':
item['role'] = 'model'
if 'content' in item :
item['parts'] = item.pop('content')
ans = ""
try:
response = self.model.generate_content(
history,
generation_config=gen_conf,stream=True)
for resp in response:
ans += resp.text
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield response._chunks[-1].usage_metadata.total_token_count
class GroqChat:
def __init__(self, key, model_name,base_url=''):
self.client = Groq(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf
)
ans = response.choices[0].message.content
if response.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
return ans, response.usage.total_tokens
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
stream=True,
**gen_conf
)
for resp in response:
if not resp.choices or not resp.choices[0].delta.content:
continue
ans += resp.choices[0].delta.content
total_tokens += 1
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
## openrouter
class OpenRouterChat(Base):
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
if not base_url:
base_url = "https://openrouter.ai/api/v1"
super().__init__(key, model_name, base_url)
class StepFunChat(Base):
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
if not base_url:
base_url = "https://api.stepfun.com/v1"
super().__init__(key, model_name, base_url)
class NvidiaChat(Base):
def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
if not base_url:
base_url = "https://integrate.api.nvidia.com/v1"
super().__init__(key, model_name, base_url)
class LmStudioChat(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
self.model_name = model_name
class OpenAI_APIChat(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
model_name = model_name.split("___")[0]
super().__init__(key, model_name, base_url)
class CoHereChat(Base):
def __init__(self, key, model_name, base_url=""):
from cohere import Client
self.client = Client(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "top_p" in gen_conf:
gen_conf["p"] = gen_conf.pop("top_p")
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
gen_conf.pop("presence_penalty")
for item in history:
if "role" in item and item["role"] == "user":
item["role"] = "USER"
if "role" in item and item["role"] == "assistant":
item["role"] = "CHATBOT"
if "content" in item:
item["message"] = item.pop("content")
mes = history.pop()["message"]
ans = ""
try:
response = self.client.chat(
model=self.model_name, chat_history=history, message=mes, **gen_conf
)
ans = response.text
if response.finish_reason == "MAX_TOKENS":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
)
return (
ans,
response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "top_p" in gen_conf:
gen_conf["p"] = gen_conf.pop("top_p")
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
gen_conf.pop("presence_penalty")
for item in history:
if "role" in item and item["role"] == "user":
item["role"] = "USER"
if "role" in item and item["role"] == "assistant":
item["role"] = "CHATBOT"
if "content" in item:
item["message"] = item.pop("content")
mes = history.pop()["message"]
ans = ""
total_tokens = 0
try:
response = self.client.chat_stream(
model=self.model_name, chat_history=history, message=mes, **gen_conf
)
for resp in response:
if resp.event_type == "text-generation":
ans += resp.text
total_tokens += num_tokens_from_string(resp.text)
elif resp.event_type == "stream-end":
if resp.finish_reason == "MAX_TOKENS":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class LeptonAIChat(Base):
def __init__(self, key, model_name, base_url=None):
if not base_url:
base_url = os.path.join("https://"+model_name+".lepton.run","api","v1")
super().__init__(key, model_name, base_url)