Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
from openai.lib.azure import AzureOpenAI | |
from zhipuai import ZhipuAI | |
from dashscope import Generation | |
from abc import ABC | |
from openai import OpenAI | |
import openai | |
from ollama import Client | |
from volcengine.maas.v2 import MaasService | |
from rag.nlp import is_english | |
from rag.utils import num_tokens_from_string | |
from groq import Groq | |
import os | |
import json | |
import requests | |
import asyncio | |
class Base(ABC): | |
def __init__(self, key, model_name, base_url): | |
self.client = OpenAI(api_key=key, base_url=base_url) | |
self.model_name = model_name | |
def chat(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
try: | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=history, | |
**gen_conf) | |
ans = response.choices[0].message.content.strip() | |
if response.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
return ans, response.usage.total_tokens | |
except openai.APIError as e: | |
return "**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
ans = "" | |
total_tokens = 0 | |
try: | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=history, | |
stream=True, | |
**gen_conf) | |
for resp in response: | |
if not resp.choices:continue | |
if not resp.choices[0].delta.content: | |
resp.choices[0].delta.content = "" | |
ans += resp.choices[0].delta.content | |
total_tokens = ( | |
( | |
total_tokens | |
+ num_tokens_from_string(resp.choices[0].delta.content) | |
) | |
if not hasattr(resp, "usage") or not resp.usage | |
else resp.usage.get("total_tokens",total_tokens) | |
) | |
if resp.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
yield ans | |
except openai.APIError as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield total_tokens | |
class GptTurbo(Base): | |
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"): | |
if not base_url: base_url="https://api.openai.com/v1" | |
super().__init__(key, model_name, base_url) | |
class MoonshotChat(Base): | |
def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"): | |
if not base_url: base_url="https://api.moonshot.cn/v1" | |
super().__init__(key, model_name, base_url) | |
class XinferenceChat(Base): | |
def __init__(self, key=None, model_name="", base_url=""): | |
if not base_url: | |
raise ValueError("Local llm url cannot be None") | |
if base_url.split("/")[-1] != "v1": | |
base_url = os.path.join(base_url, "v1") | |
key = "xxx" | |
super().__init__(key, model_name, base_url) | |
class DeepSeekChat(Base): | |
def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"): | |
if not base_url: base_url="https://api.deepseek.com/v1" | |
super().__init__(key, model_name, base_url) | |
class AzureChat(Base): | |
def __init__(self, key, model_name, **kwargs): | |
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01") | |
self.model_name = model_name | |
class BaiChuanChat(Base): | |
def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"): | |
if not base_url: | |
base_url = "https://api.baichuan-ai.com/v1" | |
super().__init__(key, model_name, base_url) | |
def _format_params(params): | |
return { | |
"temperature": params.get("temperature", 0.3), | |
"max_tokens": params.get("max_tokens", 2048), | |
"top_p": params.get("top_p", 0.85), | |
} | |
def chat(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
try: | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=history, | |
extra_body={ | |
"tools": [{ | |
"type": "web_search", | |
"web_search": { | |
"enable": True, | |
"search_mode": "performance_first" | |
} | |
}] | |
}, | |
**self._format_params(gen_conf)) | |
ans = response.choices[0].message.content.strip() | |
if response.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
return ans, response.usage.total_tokens | |
except openai.APIError as e: | |
return "**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
ans = "" | |
total_tokens = 0 | |
try: | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=history, | |
extra_body={ | |
"tools": [{ | |
"type": "web_search", | |
"web_search": { | |
"enable": True, | |
"search_mode": "performance_first" | |
} | |
}] | |
}, | |
stream=True, | |
**self._format_params(gen_conf)) | |
for resp in response: | |
if not resp.choices:continue | |
if not resp.choices[0].delta.content: | |
resp.choices[0].delta.content = "" | |
ans += resp.choices[0].delta.content | |
total_tokens = ( | |
( | |
total_tokens | |
+ num_tokens_from_string(resp.choices[0].delta.content) | |
) | |
if not hasattr(resp, "usage") | |
else resp.usage["total_tokens"] | |
) | |
if resp.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
yield ans | |
except Exception as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield total_tokens | |
class QWenChat(Base): | |
def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs): | |
import dashscope | |
dashscope.api_key = key | |
self.model_name = model_name | |
def chat(self, system, history, gen_conf): | |
from http import HTTPStatus | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
response = Generation.call( | |
self.model_name, | |
messages=history, | |
result_format='message', | |
**gen_conf | |
) | |
ans = "" | |
tk_count = 0 | |
if response.status_code == HTTPStatus.OK: | |
ans += response.output.choices[0]['message']['content'] | |
tk_count += response.usage.total_tokens | |
if response.output.choices[0].get("finish_reason", "") == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
return ans, tk_count | |
return "**ERROR**: " + response.message, tk_count | |
def chat_streamly(self, system, history, gen_conf): | |
from http import HTTPStatus | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
ans = "" | |
tk_count = 0 | |
try: | |
response = Generation.call( | |
self.model_name, | |
messages=history, | |
result_format='message', | |
stream=True, | |
**gen_conf | |
) | |
for resp in response: | |
if resp.status_code == HTTPStatus.OK: | |
ans = resp.output.choices[0]['message']['content'] | |
tk_count = resp.usage.total_tokens | |
if resp.output.choices[0].get("finish_reason", "") == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
yield ans | |
else: | |
yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**" | |
except Exception as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield tk_count | |
class ZhipuChat(Base): | |
def __init__(self, key, model_name="glm-3-turbo", **kwargs): | |
self.client = ZhipuAI(api_key=key) | |
self.model_name = model_name | |
def chat(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
try: | |
if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] | |
if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=history, | |
**gen_conf | |
) | |
ans = response.choices[0].message.content.strip() | |
if response.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
return ans, response.usage.total_tokens | |
except Exception as e: | |
return "**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] | |
if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] | |
ans = "" | |
tk_count = 0 | |
try: | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=history, | |
stream=True, | |
**gen_conf | |
) | |
for resp in response: | |
if not resp.choices[0].delta.content:continue | |
delta = resp.choices[0].delta.content | |
ans += delta | |
if resp.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
tk_count = resp.usage.total_tokens | |
if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens | |
yield ans | |
except Exception as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield tk_count | |
class OllamaChat(Base): | |
def __init__(self, key, model_name, **kwargs): | |
self.client = Client(host=kwargs["base_url"]) | |
self.model_name = model_name | |
def chat(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
try: | |
options = {} | |
if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] | |
if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] | |
if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] | |
if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] | |
if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] | |
response = self.client.chat( | |
model=self.model_name, | |
messages=history, | |
options=options, | |
keep_alive=-1 | |
) | |
ans = response["message"]["content"].strip() | |
return ans, response["eval_count"] + response.get("prompt_eval_count", 0) | |
except Exception as e: | |
return "**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
options = {} | |
if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] | |
if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] | |
if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] | |
if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] | |
if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] | |
ans = "" | |
try: | |
response = self.client.chat( | |
model=self.model_name, | |
messages=history, | |
stream=True, | |
options=options, | |
keep_alive=-1 | |
) | |
for resp in response: | |
if resp["done"]: | |
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) | |
ans += resp["message"]["content"] | |
yield ans | |
except Exception as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield 0 | |
class LocalAIChat(Base): | |
def __init__(self, key, model_name, base_url): | |
if not base_url: | |
raise ValueError("Local llm url cannot be None") | |
if base_url.split("/")[-1] != "v1": | |
base_url = os.path.join(base_url, "v1") | |
self.client = OpenAI(api_key="empty", base_url=base_url) | |
self.model_name = model_name.split("___")[0] | |
class LocalLLM(Base): | |
class RPCProxy: | |
def __init__(self, host, port): | |
self.host = host | |
self.port = int(port) | |
self.__conn() | |
def __conn(self): | |
from multiprocessing.connection import Client | |
self._connection = Client( | |
(self.host, self.port), authkey=b"infiniflow-token4kevinhu" | |
) | |
def __getattr__(self, name): | |
import pickle | |
def do_rpc(*args, **kwargs): | |
for _ in range(3): | |
try: | |
self._connection.send(pickle.dumps((name, args, kwargs))) | |
return pickle.loads(self._connection.recv()) | |
except Exception as e: | |
self.__conn() | |
raise Exception("RPC connection lost!") | |
return do_rpc | |
def __init__(self, key, model_name): | |
from jina import Client | |
self.client = Client(port=12345, protocol="grpc", asyncio=True) | |
def _prepare_prompt(self, system, history, gen_conf): | |
from rag.svr.jina_server import Prompt,Generation | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
if "max_tokens" in gen_conf: | |
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") | |
return Prompt(message=history, gen_conf=gen_conf) | |
def _stream_response(self, endpoint, prompt): | |
from rag.svr.jina_server import Prompt,Generation | |
answer = "" | |
try: | |
res = self.client.stream_doc( | |
on=endpoint, inputs=prompt, return_type=Generation | |
) | |
loop = asyncio.get_event_loop() | |
try: | |
while True: | |
answer = loop.run_until_complete(res.__anext__()).text | |
yield answer | |
except StopAsyncIteration: | |
pass | |
except Exception as e: | |
yield answer + "\n**ERROR**: " + str(e) | |
yield num_tokens_from_string(answer) | |
def chat(self, system, history, gen_conf): | |
prompt = self._prepare_prompt(system, history, gen_conf) | |
chat_gen = self._stream_response("/chat", prompt) | |
ans = next(chat_gen) | |
total_tokens = next(chat_gen) | |
return ans, total_tokens | |
def chat_streamly(self, system, history, gen_conf): | |
prompt = self._prepare_prompt(system, history, gen_conf) | |
return self._stream_response("/stream", prompt) | |
class VolcEngineChat(Base): | |
def __init__(self, key, model_name, base_url): | |
""" | |
Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special, | |
Assemble ak, sk, ep_id into api_key, store it as a dictionary type, and parse it for use | |
model_name is for display only | |
""" | |
self.client = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing') | |
self.volc_ak = eval(key).get('volc_ak', '') | |
self.volc_sk = eval(key).get('volc_sk', '') | |
self.client.set_ak(self.volc_ak) | |
self.client.set_sk(self.volc_sk) | |
self.model_name = eval(key).get('ep_id', '') | |
def chat(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
try: | |
req = { | |
"parameters": { | |
"min_new_tokens": gen_conf.get("min_new_tokens", 1), | |
"top_k": gen_conf.get("top_k", 0), | |
"max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000), | |
"temperature": gen_conf.get("temperature", 0.1), | |
"max_new_tokens": gen_conf.get("max_tokens", 1000), | |
"top_p": gen_conf.get("top_p", 0.3), | |
}, | |
"messages": history | |
} | |
response = self.client.chat(self.model_name, req) | |
ans = response.choices[0].message.content.strip() | |
if response.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
return ans, response.usage.total_tokens | |
except Exception as e: | |
return "**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
ans = "" | |
tk_count = 0 | |
try: | |
req = { | |
"parameters": { | |
"min_new_tokens": gen_conf.get("min_new_tokens", 1), | |
"top_k": gen_conf.get("top_k", 0), | |
"max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000), | |
"temperature": gen_conf.get("temperature", 0.1), | |
"max_new_tokens": gen_conf.get("max_tokens", 1000), | |
"top_p": gen_conf.get("top_p", 0.3), | |
}, | |
"messages": history | |
} | |
stream = self.client.stream_chat(self.model_name, req) | |
for resp in stream: | |
if not resp.choices[0].message.content: | |
continue | |
ans += resp.choices[0].message.content | |
if resp.choices[0].finish_reason == "stop": | |
tk_count = resp.usage.total_tokens | |
yield ans | |
except Exception as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield tk_count | |
class MiniMaxChat(Base): | |
def __init__( | |
self, | |
key, | |
model_name, | |
base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", | |
): | |
if not base_url: | |
base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2" | |
self.base_url = base_url | |
self.model_name = model_name | |
self.api_key = key | |
def chat(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
for k in list(gen_conf.keys()): | |
if k not in ["temperature", "top_p", "max_tokens"]: | |
del gen_conf[k] | |
headers = { | |
"Authorization": f"Bearer {self.api_key}", | |
"Content-Type": "application/json", | |
} | |
payload = json.dumps( | |
{"model": self.model_name, "messages": history, **gen_conf} | |
) | |
try: | |
response = requests.request( | |
"POST", url=self.base_url, headers=headers, data=payload | |
) | |
response = response.json() | |
ans = response["choices"][0]["message"]["content"].strip() | |
if response["choices"][0]["finish_reason"] == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
return ans, response["usage"]["total_tokens"] | |
except Exception as e: | |
return "**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
ans = "" | |
total_tokens = 0 | |
try: | |
headers = { | |
"Authorization": f"Bearer {self.api_key}", | |
"Content-Type": "application/json", | |
} | |
payload = json.dumps( | |
{ | |
"model": self.model_name, | |
"messages": history, | |
"stream": True, | |
**gen_conf, | |
} | |
) | |
response = requests.request( | |
"POST", | |
url=self.base_url, | |
headers=headers, | |
data=payload, | |
) | |
for resp in response.text.split("\n\n")[:-1]: | |
resp = json.loads(resp[6:]) | |
text = "" | |
if "choices" in resp and "delta" in resp["choices"][0]: | |
text = resp["choices"][0]["delta"]["content"] | |
ans += text | |
total_tokens = ( | |
total_tokens + num_tokens_from_string(text) | |
if "usage" not in resp | |
else resp["usage"]["total_tokens"] | |
) | |
yield ans | |
except Exception as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield total_tokens | |
class MistralChat(Base): | |
def __init__(self, key, model_name, base_url=None): | |
from mistralai.client import MistralClient | |
self.client = MistralClient(api_key=key) | |
self.model_name = model_name | |
def chat(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
for k in list(gen_conf.keys()): | |
if k not in ["temperature", "top_p", "max_tokens"]: | |
del gen_conf[k] | |
try: | |
response = self.client.chat( | |
model=self.model_name, | |
messages=history, | |
**gen_conf) | |
ans = response.choices[0].message.content | |
if response.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
return ans, response.usage.total_tokens | |
except openai.APIError as e: | |
return "**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
for k in list(gen_conf.keys()): | |
if k not in ["temperature", "top_p", "max_tokens"]: | |
del gen_conf[k] | |
ans = "" | |
total_tokens = 0 | |
try: | |
response = self.client.chat_stream( | |
model=self.model_name, | |
messages=history, | |
**gen_conf) | |
for resp in response: | |
if not resp.choices or not resp.choices[0].delta.content:continue | |
ans += resp.choices[0].delta.content | |
total_tokens += 1 | |
if resp.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
yield ans | |
except openai.APIError as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield total_tokens | |
class BedrockChat(Base): | |
def __init__(self, key, model_name, **kwargs): | |
import boto3 | |
self.bedrock_ak = eval(key).get('bedrock_ak', '') | |
self.bedrock_sk = eval(key).get('bedrock_sk', '') | |
self.bedrock_region = eval(key).get('bedrock_region', '') | |
self.model_name = model_name | |
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region, | |
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk) | |
def chat(self, system, history, gen_conf): | |
from botocore.exceptions import ClientError | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
for k in list(gen_conf.keys()): | |
if k not in ["temperature", "top_p", "max_tokens"]: | |
del gen_conf[k] | |
if "max_tokens" in gen_conf: | |
gen_conf["maxTokens"] = gen_conf["max_tokens"] | |
_ = gen_conf.pop("max_tokens") | |
if "top_p" in gen_conf: | |
gen_conf["topP"] = gen_conf["top_p"] | |
_ = gen_conf.pop("top_p") | |
try: | |
# Send the message to the model, using a basic inference configuration. | |
response = self.client.converse( | |
modelId=self.model_name, | |
messages=history, | |
inferenceConfig=gen_conf | |
) | |
# Extract and print the response text. | |
ans = response["output"]["message"]["content"][0]["text"] | |
return ans, num_tokens_from_string(ans) | |
except (ClientError, Exception) as e: | |
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 | |
def chat_streamly(self, system, history, gen_conf): | |
from botocore.exceptions import ClientError | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
for k in list(gen_conf.keys()): | |
if k not in ["temperature", "top_p", "max_tokens"]: | |
del gen_conf[k] | |
if "max_tokens" in gen_conf: | |
gen_conf["maxTokens"] = gen_conf["max_tokens"] | |
_ = gen_conf.pop("max_tokens") | |
if "top_p" in gen_conf: | |
gen_conf["topP"] = gen_conf["top_p"] | |
_ = gen_conf.pop("top_p") | |
if self.model_name.split('.')[0] == 'ai21': | |
try: | |
response = self.client.converse( | |
modelId=self.model_name, | |
messages=history, | |
inferenceConfig=gen_conf | |
) | |
ans = response["output"]["message"]["content"][0]["text"] | |
return ans, num_tokens_from_string(ans) | |
except (ClientError, Exception) as e: | |
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 | |
ans = "" | |
try: | |
# Send the message to the model, using a basic inference configuration. | |
streaming_response = self.client.converse_stream( | |
modelId=self.model_name, | |
messages=history, | |
inferenceConfig=gen_conf | |
) | |
# Extract and print the streamed response text in real-time. | |
for resp in streaming_response["stream"]: | |
if "contentBlockDelta" in resp: | |
ans += resp["contentBlockDelta"]["delta"]["text"] | |
yield ans | |
except (ClientError, Exception) as e: | |
yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}" | |
yield num_tokens_from_string(ans) | |
class GeminiChat(Base): | |
def __init__(self, key, model_name,base_url=None): | |
from google.generativeai import client,GenerativeModel | |
client.configure(api_key=key) | |
_client = client.get_default_generative_client() | |
self.model_name = 'models/' + model_name | |
self.model = GenerativeModel(model_name=self.model_name) | |
self.model._client = _client | |
def chat(self,system,history,gen_conf): | |
if system: | |
history.insert(0, {"role": "user", "parts": system}) | |
if 'max_tokens' in gen_conf: | |
gen_conf['max_output_tokens'] = gen_conf['max_tokens'] | |
for k in list(gen_conf.keys()): | |
if k not in ["temperature", "top_p", "max_output_tokens"]: | |
del gen_conf[k] | |
for item in history: | |
if 'role' in item and item['role'] == 'assistant': | |
item['role'] = 'model' | |
if 'content' in item : | |
item['parts'] = item.pop('content') | |
try: | |
response = self.model.generate_content( | |
history, | |
generation_config=gen_conf) | |
ans = response.text | |
return ans, response.usage_metadata.total_token_count | |
except Exception as e: | |
return "**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "user", "parts": system}) | |
if 'max_tokens' in gen_conf: | |
gen_conf['max_output_tokens'] = gen_conf['max_tokens'] | |
for k in list(gen_conf.keys()): | |
if k not in ["temperature", "top_p", "max_output_tokens"]: | |
del gen_conf[k] | |
for item in history: | |
if 'role' in item and item['role'] == 'assistant': | |
item['role'] = 'model' | |
if 'content' in item : | |
item['parts'] = item.pop('content') | |
ans = "" | |
try: | |
response = self.model.generate_content( | |
history, | |
generation_config=gen_conf,stream=True) | |
for resp in response: | |
ans += resp.text | |
yield ans | |
except Exception as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield response._chunks[-1].usage_metadata.total_token_count | |
class GroqChat: | |
def __init__(self, key, model_name,base_url=''): | |
self.client = Groq(api_key=key) | |
self.model_name = model_name | |
def chat(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
for k in list(gen_conf.keys()): | |
if k not in ["temperature", "top_p", "max_tokens"]: | |
del gen_conf[k] | |
ans = "" | |
try: | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=history, | |
**gen_conf | |
) | |
ans = response.choices[0].message.content | |
if response.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
return ans, response.usage.total_tokens | |
except Exception as e: | |
return ans + "\n**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
for k in list(gen_conf.keys()): | |
if k not in ["temperature", "top_p", "max_tokens"]: | |
del gen_conf[k] | |
ans = "" | |
total_tokens = 0 | |
try: | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=history, | |
stream=True, | |
**gen_conf | |
) | |
for resp in response: | |
if not resp.choices or not resp.choices[0].delta.content: | |
continue | |
ans += resp.choices[0].delta.content | |
total_tokens += 1 | |
if resp.choices[0].finish_reason == "length": | |
ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | |
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
yield ans | |
except Exception as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield total_tokens | |
## openrouter | |
class OpenRouterChat(Base): | |
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"): | |
if not base_url: | |
base_url = "https://openrouter.ai/api/v1" | |
super().__init__(key, model_name, base_url) | |
class StepFunChat(Base): | |
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"): | |
if not base_url: | |
base_url = "https://api.stepfun.com/v1" | |
super().__init__(key, model_name, base_url) | |
class NvidiaChat(Base): | |
def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"): | |
if not base_url: | |
base_url = "https://integrate.api.nvidia.com/v1" | |
super().__init__(key, model_name, base_url) | |
class LmStudioChat(Base): | |
def __init__(self, key, model_name, base_url): | |
if not base_url: | |
raise ValueError("Local llm url cannot be None") | |
if base_url.split("/")[-1] != "v1": | |
base_url = os.path.join(base_url, "v1") | |
self.client = OpenAI(api_key="lm-studio", base_url=base_url) | |
self.model_name = model_name | |
class OpenAI_APIChat(Base): | |
def __init__(self, key, model_name, base_url): | |
if not base_url: | |
raise ValueError("url cannot be None") | |
if base_url.split("/")[-1] != "v1": | |
base_url = os.path.join(base_url, "v1") | |
model_name = model_name.split("___")[0] | |
super().__init__(key, model_name, base_url) | |
class CoHereChat(Base): | |
def __init__(self, key, model_name, base_url=""): | |
from cohere import Client | |
self.client = Client(api_key=key) | |
self.model_name = model_name | |
def chat(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
if "top_p" in gen_conf: | |
gen_conf["p"] = gen_conf.pop("top_p") | |
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: | |
gen_conf.pop("presence_penalty") | |
for item in history: | |
if "role" in item and item["role"] == "user": | |
item["role"] = "USER" | |
if "role" in item and item["role"] == "assistant": | |
item["role"] = "CHATBOT" | |
if "content" in item: | |
item["message"] = item.pop("content") | |
mes = history.pop()["message"] | |
ans = "" | |
try: | |
response = self.client.chat( | |
model=self.model_name, chat_history=history, message=mes, **gen_conf | |
) | |
ans = response.text | |
if response.finish_reason == "MAX_TOKENS": | |
ans += ( | |
"...\nFor the content length reason, it stopped, continue?" | |
if is_english([ans]) | |
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
) | |
return ( | |
ans, | |
response.meta.tokens.input_tokens + response.meta.tokens.output_tokens, | |
) | |
except Exception as e: | |
return ans + "\n**ERROR**: " + str(e), 0 | |
def chat_streamly(self, system, history, gen_conf): | |
if system: | |
history.insert(0, {"role": "system", "content": system}) | |
if "top_p" in gen_conf: | |
gen_conf["p"] = gen_conf.pop("top_p") | |
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: | |
gen_conf.pop("presence_penalty") | |
for item in history: | |
if "role" in item and item["role"] == "user": | |
item["role"] = "USER" | |
if "role" in item and item["role"] == "assistant": | |
item["role"] = "CHATBOT" | |
if "content" in item: | |
item["message"] = item.pop("content") | |
mes = history.pop()["message"] | |
ans = "" | |
total_tokens = 0 | |
try: | |
response = self.client.chat_stream( | |
model=self.model_name, chat_history=history, message=mes, **gen_conf | |
) | |
for resp in response: | |
if resp.event_type == "text-generation": | |
ans += resp.text | |
total_tokens += num_tokens_from_string(resp.text) | |
elif resp.event_type == "stream-end": | |
if resp.finish_reason == "MAX_TOKENS": | |
ans += ( | |
"...\nFor the content length reason, it stopped, continue?" | |
if is_english([ans]) | |
else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | |
) | |
yield ans | |
except Exception as e: | |
yield ans + "\n**ERROR**: " + str(e) | |
yield total_tokens | |
class LeptonAIChat(Base): | |
def __init__(self, key, model_name, base_url=None): | |
if not base_url: | |
base_url = os.path.join("https://"+model_name+".lepton.run","api","v1") | |
super().__init__(key, model_name, base_url) |