Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import datetime | |
import json | |
import logging | |
import os | |
import hashlib | |
import copy | |
import re | |
import sys | |
import time | |
import traceback | |
from functools import partial | |
from api.db.services.file2document_service import File2DocumentService | |
from api.settings import retrievaler | |
from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor | |
from rag.utils.minio_conn import MINIO | |
from api.db.db_models import close_connection | |
from rag.settings import database_logger, SVR_QUEUE_NAME | |
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE | |
from multiprocessing import Pool | |
import numpy as np | |
from elasticsearch_dsl import Q, Search | |
from multiprocessing.context import TimeoutError | |
from api.db.services.task_service import TaskService | |
from rag.utils.es_conn import ELASTICSEARCH | |
from timeit import default_timer as timer | |
from rag.utils import rmSpace, findMaxTm, num_tokens_from_string | |
from rag.nlp import search, rag_tokenizer | |
from io import BytesIO | |
import pandas as pd | |
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, knowledge_graph, email | |
from api.db import LLMType, ParserType | |
from api.db.services.document_service import DocumentService | |
from api.db.services.llm_service import LLMBundle | |
from api.utils.file_utils import get_project_base_directory | |
from rag.utils.redis_conn import REDIS_CONN | |
BATCH_SIZE = 64 | |
FACTORY = { | |
"general": naive, | |
ParserType.NAIVE.value: naive, | |
ParserType.PAPER.value: paper, | |
ParserType.BOOK.value: book, | |
ParserType.PRESENTATION.value: presentation, | |
ParserType.MANUAL.value: manual, | |
ParserType.LAWS.value: laws, | |
ParserType.QA.value: qa, | |
ParserType.TABLE.value: table, | |
ParserType.RESUME.value: resume, | |
ParserType.PICTURE.value: picture, | |
ParserType.ONE.value: one, | |
ParserType.AUDIO.value: audio, | |
ParserType.EMAIL.value: email, | |
ParserType.KG.value: knowledge_graph | |
} | |
def set_progress(task_id, from_page=0, to_page=-1, | |
prog=None, msg="Processing..."): | |
if prog is not None and prog < 0: | |
msg = "[ERROR]" + msg | |
cancel = TaskService.do_cancel(task_id) | |
if cancel: | |
msg += " [Canceled]" | |
prog = -1 | |
if to_page > 0: | |
if msg: | |
msg = f"Page({from_page + 1}~{to_page + 1}): " + msg | |
d = {"progress_msg": msg} | |
if prog is not None: | |
d["progress"] = prog | |
try: | |
TaskService.update_progress(task_id, d) | |
except Exception as e: | |
cron_logger.error("set_progress:({}), {}".format(task_id, str(e))) | |
close_connection() | |
if cancel: | |
sys.exit() | |
def collect(): | |
try: | |
payload = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", "rag_flow_svr_task_consumer") | |
if not payload: | |
time.sleep(1) | |
return pd.DataFrame() | |
except Exception as e: | |
cron_logger.error("Get task event from queue exception:" + str(e)) | |
return pd.DataFrame() | |
msg = payload.get_message() | |
payload.ack() | |
if not msg: return pd.DataFrame() | |
if TaskService.do_cancel(msg["id"]): | |
cron_logger.info("Task {} has been canceled.".format(msg["id"])) | |
return pd.DataFrame() | |
tasks = TaskService.get_tasks(msg["id"]) | |
assert tasks, "{} empty task!".format(msg["id"]) | |
tasks = pd.DataFrame(tasks) | |
if msg.get("type", "") == "raptor": | |
tasks["task_type"] = "raptor" | |
return tasks | |
def get_minio_binary(bucket, name): | |
return MINIO.get(bucket, name) | |
def build(row): | |
if row["size"] > DOC_MAXIMUM_SIZE: | |
set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" % | |
(int(DOC_MAXIMUM_SIZE / 1024 / 1024))) | |
return [] | |
callback = partial( | |
set_progress, | |
row["id"], | |
row["from_page"], | |
row["to_page"]) | |
chunker = FACTORY[row["parser_id"].lower()] | |
try: | |
st = timer() | |
bucket, name = File2DocumentService.get_minio_address(doc_id=row["doc_id"]) | |
binary = get_minio_binary(bucket, name) | |
cron_logger.info( | |
"From minio({}) {}/{}".format(timer() - st, row["location"], row["name"])) | |
cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"], | |
to_page=row["to_page"], lang=row["language"], callback=callback, | |
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"]) | |
cron_logger.info( | |
"Chunkking({}) {}/{}".format(timer() - st, row["location"], row["name"])) | |
except TimeoutError as e: | |
callback(-1, f"Internal server error: Fetch file timeout. Could you try it again.") | |
cron_logger.error( | |
"Chunkking {}/{}: Fetch file timeout.".format(row["location"], row["name"])) | |
return | |
except Exception as e: | |
if re.search("(No such file|not found)", str(e)): | |
callback(-1, "Can not find file <%s>" % row["name"]) | |
else: | |
callback(-1, f"Internal server error: %s" % | |
str(e).replace("'", "")) | |
traceback.print_exc() | |
cron_logger.error( | |
"Chunkking {}/{}: {}".format(row["location"], row["name"], str(e))) | |
return | |
docs = [] | |
doc = { | |
"doc_id": row["doc_id"], | |
"kb_id": [str(row["kb_id"])] | |
} | |
el = 0 | |
for ck in cks: | |
d = copy.deepcopy(doc) | |
d.update(ck) | |
md5 = hashlib.md5() | |
md5.update((ck["content_with_weight"] + | |
str(d["doc_id"])).encode("utf-8")) | |
d["_id"] = md5.hexdigest() | |
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |
d["create_timestamp_flt"] = datetime.datetime.now().timestamp() | |
if not d.get("image"): | |
docs.append(d) | |
continue | |
output_buffer = BytesIO() | |
if isinstance(d["image"], bytes): | |
output_buffer = BytesIO(d["image"]) | |
else: | |
d["image"].save(output_buffer, format='JPEG') | |
st = timer() | |
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue()) | |
el += timer() - st | |
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"]) | |
del d["image"] | |
docs.append(d) | |
cron_logger.info("MINIO PUT({}):{}".format(row["name"], el)) | |
return docs | |
def init_kb(row): | |
idxnm = search.index_name(row["tenant_id"]) | |
if ELASTICSEARCH.indexExist(idxnm): | |
return | |
return ELASTICSEARCH.createIdx(idxnm, json.load( | |
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r"))) | |
def embedding(docs, mdl, parser_config={}, callback=None): | |
batch_size = 32 | |
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [ | |
re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs] | |
tk_count = 0 | |
if len(tts) == len(cnts): | |
tts_ = np.array([]) | |
for i in range(0, len(tts), batch_size): | |
vts, c = mdl.encode(tts[i: i + batch_size]) | |
if len(tts_) == 0: | |
tts_ = vts | |
else: | |
tts_ = np.concatenate((tts_, vts), axis=0) | |
tk_count += c | |
callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="") | |
tts = tts_ | |
cnts_ = np.array([]) | |
for i in range(0, len(cnts), batch_size): | |
vts, c = mdl.encode(cnts[i: i + batch_size]) | |
if len(cnts_) == 0: | |
cnts_ = vts | |
else: | |
cnts_ = np.concatenate((cnts_, vts), axis=0) | |
tk_count += c | |
callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="") | |
cnts = cnts_ | |
title_w = float(parser_config.get("filename_embd_weight", 0.1)) | |
vects = (title_w * tts + (1 - title_w) * | |
cnts) if len(tts) == len(cnts) else cnts | |
assert len(vects) == len(docs) | |
for i, d in enumerate(docs): | |
v = vects[i].tolist() | |
d["q_%d_vec" % len(v)] = v | |
return tk_count | |
def run_raptor(row, chat_mdl, embd_mdl, callback=None): | |
vts, _ = embd_mdl.encode(["ok"]) | |
vctr_nm = "q_%d_vec"%len(vts[0]) | |
chunks = [] | |
for d in retrievaler.chunk_list(row["doc_id"], row["tenant_id"], fields=["content_with_weight", vctr_nm]): | |
chunks.append((d["content_with_weight"], np.array(d[vctr_nm]))) | |
raptor = Raptor( | |
row["parser_config"]["raptor"].get("max_cluster", 64), | |
chat_mdl, | |
embd_mdl, | |
row["parser_config"]["raptor"]["prompt"], | |
row["parser_config"]["raptor"]["max_token"], | |
row["parser_config"]["raptor"]["threshold"] | |
) | |
original_length = len(chunks) | |
raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback) | |
doc = { | |
"doc_id": row["doc_id"], | |
"kb_id": [str(row["kb_id"])], | |
"docnm_kwd": row["name"], | |
"title_tks": rag_tokenizer.tokenize(row["name"]) | |
} | |
res = [] | |
tk_count = 0 | |
for content, vctr in chunks[original_length:]: | |
d = copy.deepcopy(doc) | |
md5 = hashlib.md5() | |
md5.update((content + str(d["doc_id"])).encode("utf-8")) | |
d["_id"] = md5.hexdigest() | |
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |
d["create_timestamp_flt"] = datetime.datetime.now().timestamp() | |
d[vctr_nm] = vctr.tolist() | |
d["content_with_weight"] = content | |
d["content_ltks"] = rag_tokenizer.tokenize(content) | |
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) | |
res.append(d) | |
tk_count += num_tokens_from_string(content) | |
return res, tk_count | |
def main(): | |
rows = collect() | |
if len(rows) == 0: | |
return | |
for _, r in rows.iterrows(): | |
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"]) | |
try: | |
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"]) | |
except Exception as e: | |
callback(-1, msg=str(e)) | |
cron_logger.error(str(e)) | |
continue | |
if r.get("task_type", "") == "raptor": | |
try: | |
chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"]) | |
cks, tk_count = run_raptor(r, chat_mdl, embd_mdl, callback) | |
except Exception as e: | |
callback(-1, msg=str(e)) | |
cron_logger.error(str(e)) | |
continue | |
else: | |
st = timer() | |
cks = build(r) | |
cron_logger.info("Build chunks({}): {}".format(r["name"], timer() - st)) | |
if cks is None: | |
continue | |
if not cks: | |
callback(1., "No chunk! Done!") | |
continue | |
# TODO: exception handler | |
## set_progress(r["did"], -1, "ERROR: ") | |
callback( | |
msg="Finished slicing files(%d). Start to embedding the content." % | |
len(cks)) | |
st = timer() | |
try: | |
tk_count = embedding(cks, embd_mdl, r["parser_config"], callback) | |
except Exception as e: | |
callback(-1, "Embedding error:{}".format(str(e))) | |
cron_logger.error(str(e)) | |
tk_count = 0 | |
cron_logger.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st)) | |
callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer() - st)) | |
init_kb(r) | |
chunk_count = len(set([c["_id"] for c in cks])) | |
st = timer() | |
es_r = "" | |
es_bulk_size = 16 | |
for b in range(0, len(cks), es_bulk_size): | |
es_r = ELASTICSEARCH.bulk(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"])) | |
if b % 128 == 0: | |
callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="") | |
cron_logger.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st)) | |
if es_r: | |
callback(-1, "Index failure!") | |
ELASTICSEARCH.deleteByQuery( | |
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"])) | |
cron_logger.error(str(es_r)) | |
else: | |
if TaskService.do_cancel(r["id"]): | |
ELASTICSEARCH.deleteByQuery( | |
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"])) | |
continue | |
callback(1., "Done!") | |
DocumentService.increment_chunk_num( | |
r["doc_id"], r["kb_id"], tk_count, chunk_count, 0) | |
cron_logger.info( | |
"Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format( | |
r["id"], tk_count, len(cks), timer() - st)) | |
if __name__ == "__main__": | |
peewee_logger = logging.getLogger('peewee') | |
peewee_logger.propagate = False | |
peewee_logger.addHandler(database_logger.handlers[0]) | |
peewee_logger.setLevel(database_logger.level) | |
while True: | |
main() | |