feat: Add support for "Offers - IDs only" type in compute_offer function
Browse files- app.py +2 -2
- utils/gradio_utils.py +15 -5
app.py
CHANGED
@@ -14,10 +14,10 @@ PASS = os.getenv("PASSWORD")
|
|
14 |
# create an interface and limit output's width for the dataframe bu
|
15 |
list_iface = gr.Interface(fn=compute_offer,
|
16 |
inputs=[gr.File(label="Upload CSV", type="file"),
|
17 |
-
gr.Slider(
|
18 |
gr.Slider(5000, 10000000, value=1000000, step=1, label="Minimum Sent", info="Minimum number of emails sent"),
|
19 |
gr.Dropdown(["Comcast", "Yahoo", "Hotmail", "Aol"], value="Yahoo", label="Domain"),
|
20 |
-
gr.Radio(["Newsletters", "Offers"], label="Type", value="Offers"),
|
21 |
gr.Textbox(label="Exclude list", info="Example: INH,MNP", value="INH,DHI,HHP,RTA,JVR,HTH,FNC,SCD,ENH,WIP")],
|
22 |
outputs="dataframe")
|
23 |
|
|
|
14 |
# create an interface and limit output's width for the dataframe bu
|
15 |
list_iface = gr.Interface(fn=compute_offer,
|
16 |
inputs=[gr.File(label="Upload CSV", type="file"),
|
17 |
+
gr.Slider(0, 365, value=3, step=1, label="Days", info="Number of days to look back"),
|
18 |
gr.Slider(5000, 10000000, value=1000000, step=1, label="Minimum Sent", info="Minimum number of emails sent"),
|
19 |
gr.Dropdown(["Comcast", "Yahoo", "Hotmail", "Aol"], value="Yahoo", label="Domain"),
|
20 |
+
gr.Radio(["Newsletters", "Offers", 'Offers - IDs only'], label="Type", value="Offers - IDs only"),
|
21 |
gr.Textbox(label="Exclude list", info="Example: INH,MNP", value="INH,DHI,HHP,RTA,JVR,HTH,FNC,SCD,ENH,WIP")],
|
22 |
outputs="dataframe")
|
23 |
|
utils/gradio_utils.py
CHANGED
@@ -283,7 +283,7 @@ def compute_offer(csv_file, days_lookback, min_sent, domain, offer_type, x_list)
|
|
283 |
(df_all['Nume'].str.contains(r' \d{4}$')) & \
|
284 |
(~df_all['Nume'].str.contains('TRIMITE'))
|
285 |
]
|
286 |
-
elif offer_type == "Offers":
|
287 |
df_all = df_all[~df_all['Nume'].str.startswith("Aeon News")]
|
288 |
df_all = df_all[~df_all['Nume'].str.contains("NU SE TRIMITE")]
|
289 |
df_all = df_all[~df_all['Nume'].str.contains("de testat")]
|
@@ -304,16 +304,26 @@ def compute_offer(csv_file, days_lookback, min_sent, domain, offer_type, x_list)
|
|
304 |
|
305 |
if offer_type == "Newsletters":
|
306 |
final_df = df_all.groupby(["Oferta", "Nume"])\
|
307 |
-
.agg(
|
308 |
-
.sort_values(['CO', '
|
309 |
final_df['send_avg'] = final_df['send_avg'].astype(int)
|
310 |
final_df['CO'] = final_df['CO'].round(2).astype(float)
|
311 |
final_df.reset_index(inplace=True)
|
312 |
elif offer_type == "Offers":
|
313 |
final_df = df_all.groupby(["Oferta", "Nume"])\
|
314 |
-
.agg(
|
315 |
-
.sort_values(['ECPM', '
|
316 |
final_df['send_avg'] = final_df['send_avg'].astype(int)
|
317 |
final_df['ECPM'] = final_df['ECPM'].round(2).astype(float)
|
318 |
final_df.reset_index(inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
return final_df
|
|
|
283 |
(df_all['Nume'].str.contains(r' \d{4}$')) & \
|
284 |
(~df_all['Nume'].str.contains('TRIMITE'))
|
285 |
]
|
286 |
+
elif offer_type == "Offers" or offer_type == "Offers - IDs only":
|
287 |
df_all = df_all[~df_all['Nume'].str.startswith("Aeon News")]
|
288 |
df_all = df_all[~df_all['Nume'].str.contains("NU SE TRIMITE")]
|
289 |
df_all = df_all[~df_all['Nume'].str.contains("de testat")]
|
|
|
304 |
|
305 |
if offer_type == "Newsletters":
|
306 |
final_df = df_all.groupby(["Oferta", "Nume"])\
|
307 |
+
.agg( times_sent=('Oferta', 'count'), send_avg=('Send', 'mean'), CO=('Click Open', 'mean'))\
|
308 |
+
.sort_values(['CO', 'times_sent'], ascending=False)
|
309 |
final_df['send_avg'] = final_df['send_avg'].astype(int)
|
310 |
final_df['CO'] = final_df['CO'].round(2).astype(float)
|
311 |
final_df.reset_index(inplace=True)
|
312 |
elif offer_type == "Offers":
|
313 |
final_df = df_all.groupby(["Oferta", "Nume"])\
|
314 |
+
.agg( times_sent=('Oferta', 'count'), send_avg=('Send', 'mean'), ECPM=('ECPM', 'mean'))\
|
315 |
+
.sort_values(['ECPM', 'times_sent'], ascending=False)
|
316 |
final_df['send_avg'] = final_df['send_avg'].astype(int)
|
317 |
final_df['ECPM'] = final_df['ECPM'].round(2).astype(float)
|
318 |
final_df.reset_index(inplace=True)
|
319 |
+
elif offer_type == "Offers - IDs only":
|
320 |
+
df_all['offer_id'] = df_all['Nume'].str.extract(r'(\d{3,4}$)')
|
321 |
+
final_df = df_all.groupby(["offer_id"])\
|
322 |
+
.agg( times_sent=('offer_id', 'count'), send_avg=('Send', 'mean'), ECPM=('ECPM', 'mean'))\
|
323 |
+
.sort_values(['ECPM', 'times_sent'], ascending=False)
|
324 |
+
final_df['send_avg'] = final_df['send_avg'].astype(int)
|
325 |
+
final_df['ECPM'] = final_df['ECPM'].round(2).astype(float)
|
326 |
+
final_df.reset_index(inplace=True)
|
327 |
+
else:
|
328 |
+
final_df = pd.DataFrame()
|
329 |
return final_df
|