rightnow / recon /ds_utils.py
zzzzzeee's picture
Upload 101 files
5fc3d65 verified
import numpy as np
import os
import h5py
import cv2
import os.path as osp
import torch
import pandas as pd
from pprint import pprint
import matplotlib
import matplotlib.pyplot as plt
import torch.nn.functional as F
def resize(image, size):
image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0)
return image
def read_labels(label_path):
labels_ids = []
all_true_boxes = []
with open(label_path, 'r') as sequence_ids:
labels_ids.extend(map(str.strip, sequence_ids.readlines()))
for i, sequence_id in enumerate(labels_ids):
true_bounding_boxes = sequence_id.split(' ')[1:]
if true_bounding_boxes == ['None']:
all_true_boxes.append(None)
else:
# print("boxesnum", len(true_bounding_boxes))
true_bounding_boxes = [(int(box.split(',')[4]), int(box.split(',')[0]), int(box.split(',')[1]),
int(box.split(',')[2])-int(box.split(',')[0]), int(box.split(',')[3])-int(box.split(',')[1])) for box in true_bounding_boxes]
# boxes_type={'names':('class_id','x','y','w','h'), 'formats':('u4','u4', 'u4','u4','u4')}
true_bounding_boxes=np.array(true_bounding_boxes) # ,dtype=boxes_type
all_true_boxes.append(true_bounding_boxes)
return all_true_boxes
def read_PKUdataset_info_to_dict(file_path):
xls = pd.ExcelFile(file_path)
data_dict = {}
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
sheet_data = df.set_index('sequence name').to_dict(orient='index')
for key, value in sheet_data.items():
if key not in data_dict:
data_dict[key] = {}
data_dict[key]['time length'] = value['time length (s)']
data_dict[key]['start number'] = value['Vidar start number']
data_dict[key]['end number'] = value['Vidar end number']
return data_dict
def vis_event_image(image_data):
cmap = matplotlib.colormaps['coolwarm']
plt.imshow(image_data, cmap=cmap, vmin=-1, vmax=1)
cbar = plt.colorbar(ticks=[-1, 0, 1])
cbar.set_ticklabels(['Red', 'Neutral', 'Blue'])
plt.title('Visualization of Image with -1, 0, 1')
plt.savefig("vis_event.png", format='png')
plt.close()
def get_sequences_ids(data_path):
"""
getting ids from .txt file.
args :
- data_path: .txt file.
return:
- ids: the sequences from .txt file.
"""
ids = []
with open(data_path, 'r') as sequence_ids:
ids.extend(map(str.strip, sequence_ids.readlines()))
return ids
def load_vidar_dat(filename, frame_cnt=None, size=(480, 680), reverse_spike=True):
'''
output: <class 'numpy.ndarray'> (frame_cnt, height, width) {0,1} float32
'''
array = np.fromfile(filename, dtype=np.uint8)
height, width = size
len_per_frame = height * width // 8
framecnt = frame_cnt if frame_cnt != None else len(array) // len_per_frame
spikes = []
for i in range(framecnt):
compr_frame = array[i * len_per_frame: (i + 1) * len_per_frame]
blist = []
for b in range(8):
blist.append(np.right_shift(np.bitwise_and(
compr_frame, np.left_shift(1, b)), b))
frame_ = np.stack(blist).transpose()
frame_ = frame_.reshape((height, width), order='C')
if reverse_spike:
frame_ = np.flipud(frame_)
spikes.append(frame_)
return np.array(spikes).astype(np.float32)
def make_dir(path):
if not osp.exists(path):
os.makedirs(path)
return
def RawToSpike(video_seq, h, w, flipud=True):
video_seq = np.array(video_seq).astype(np.uint8)
img_size = h*w
img_num = len(video_seq)//(img_size//8)
SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
pix_id = np.arange(0,h*w)
pix_id = np.reshape(pix_id, (h, w))
comparator = np.left_shift(1, np.mod(pix_id, 8))
byte_id = pix_id // 8
for img_id in np.arange(img_num):
id_start = img_id*img_size//8
id_end = id_start + img_size//8
cur_info = video_seq[id_start:id_end]
data = cur_info[byte_id]
result = np.bitwise_and(data, comparator)
if flipud:
SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
else:
SpikeMatrix[img_id, :, :] = (result == comparator)
return SpikeMatrix
def save_to_h5(SpikeMatrix, h5path):
f = h5py.File(h5path, 'w')
f['raw_spike'] = SpikeMatrix
f.close()
def dat_to_h5(dat_path, h5path, size=[436, 1024]):
f = open(dat_path, 'rb')
video_seq = f.read()
video_seq = np.frombuffer(video_seq, 'b')
sp_mat = RawToSpike(video_seq, size[0], size[1])
save_to_h5(sp_mat, h5path)
############################################################################
## General Read Function
def read_gen(file_name):
ext = osp.splitext(file_name)[-1]
if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
# return Image.open(file_name)
return cv2.imread(file_name)
elif ext == '.bin' or ext == '.raw':
return np.load(file_name)
elif ext == '.flo':
return readFlow(file_name).astype(np.float32)
return []
def im2gray(im):
# im = np.array(im).astype(np.float32)[..., :3] / 255.
# return cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
im = im.astype(np.float32) / 255.
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im = np.expand_dims(im, axis=0)
return im
def im_color(im):
im = im.astype(np.float32) / 255.
im = im.transpose([2, 0, 1])
return im
TAG_CHAR = np.array([202021.25], np.float32)
def readFlow(fn):
""" Read .flo file in Middlebury format"""
# Code adapted from:
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
# WARNING: this will work on little-endian architectures (eg Intel x86) only!
# print 'fn = %s'%(fn)
with open(fn, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
if 202021.25 != magic:
print('Magic number incorrect. Invalid .flo file')
return None
else:
w = np.fromfile(f, np.int32, count=1)
h = np.fromfile(f, np.int32, count=1)
# print 'Reading %d x %d flo file\n' % (w, h)
data = np.fromfile(f, np.float32, count=2*int(w)*int(h))
# Reshape data into 3D array (columns, rows, bands)
# The reshape here is for visualization, the original code is (w,h,2)
return np.resize(data, (int(h), int(w), 2))
from contextlib import contextmanager
import time
import torch
@contextmanager
def timeblock(label):
torch.cuda.synchronize()
start = time.perf_counter()
try:
yield
finally:
torch.cuda.synchronize()
end = time.perf_counter()
print('{} : {}'.format(label, end - start))
if __name__ == '__main__':
img_unpadded = torch.randn(8, 1, 260, 346)
img_padded = pad_to_square_and_32(img_unpadded, 0)
print(img_unpadded.shape, img_padded.shape)
info_dict = read_PKUdataset_info_to_dict('Dtracker/myaflow/dataset/statistics/PKU_Vidar_DVS_statistics.xlsx')
scene = '00047_rotation_5000K_800r'
########
## spike
# spike_dir = 'Dtracker_data/test/Vidar/00047_rotation_5000K_800r/'
# spikes_paths = sorted(os.listdir(spike_dir), key=lambda x: int(os.path.basename(x).split(".")[0]))
# spikes_paths_list = [osp.join(spike_dir, spikes_paths[i]) for i in range(len(spikes_paths))]
# # pprint(spikes_paths_list)
# spikes = [dat_to_spmat(p, size=(250, 400)) for p in spikes_paths_list]
# print("len(spikes)", len(spikes), type(spikes), type(spikes[-1]))
########
## event
# scene = '00505_UAV_outdoor6'
# event_path = 'Dtracker_data/test/DVS/00047_rotation_5000K_800r.hdf5'
# # event_path = 'Dtracker_data/test/DVS/00505_UAV_outdoor6.hdf5'
# events = event_to_bins(event_path, temporal_length=info_dict[scene]['time length'], interval=0.02)
# events = event_bins_to_image(events, height=260, width=346)
# print("len(events)", len(events), type(events), type(events[-1]))
########
## label
# label_path = 'Dtracker_data/test/labels/00047_rotation_5000K_800r.txt'
# labels = read_labels(label_path)
# # pprint(labels)
# print("len(labels)", len(labels), type(labels), type(labels[-1]))