|
import numpy as np
|
|
import os
|
|
import h5py
|
|
import cv2
|
|
import os.path as osp
|
|
import torch
|
|
|
|
import pandas as pd
|
|
from pprint import pprint
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def resize(image, size):
|
|
image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0)
|
|
return image
|
|
|
|
|
|
def read_labels(label_path):
|
|
labels_ids = []
|
|
all_true_boxes = []
|
|
with open(label_path, 'r') as sequence_ids:
|
|
labels_ids.extend(map(str.strip, sequence_ids.readlines()))
|
|
for i, sequence_id in enumerate(labels_ids):
|
|
true_bounding_boxes = sequence_id.split(' ')[1:]
|
|
if true_bounding_boxes == ['None']:
|
|
all_true_boxes.append(None)
|
|
else:
|
|
|
|
true_bounding_boxes = [(int(box.split(',')[4]), int(box.split(',')[0]), int(box.split(',')[1]),
|
|
int(box.split(',')[2])-int(box.split(',')[0]), int(box.split(',')[3])-int(box.split(',')[1])) for box in true_bounding_boxes]
|
|
|
|
true_bounding_boxes=np.array(true_bounding_boxes)
|
|
all_true_boxes.append(true_bounding_boxes)
|
|
return all_true_boxes
|
|
|
|
|
|
|
|
|
|
def read_PKUdataset_info_to_dict(file_path):
|
|
xls = pd.ExcelFile(file_path)
|
|
data_dict = {}
|
|
for sheet_name in xls.sheet_names:
|
|
df = xls.parse(sheet_name)
|
|
sheet_data = df.set_index('sequence name').to_dict(orient='index')
|
|
for key, value in sheet_data.items():
|
|
if key not in data_dict:
|
|
data_dict[key] = {}
|
|
data_dict[key]['time length'] = value['time length (s)']
|
|
data_dict[key]['start number'] = value['Vidar start number']
|
|
data_dict[key]['end number'] = value['Vidar end number']
|
|
return data_dict
|
|
|
|
|
|
|
|
|
|
def vis_event_image(image_data):
|
|
cmap = matplotlib.colormaps['coolwarm']
|
|
plt.imshow(image_data, cmap=cmap, vmin=-1, vmax=1)
|
|
cbar = plt.colorbar(ticks=[-1, 0, 1])
|
|
cbar.set_ticklabels(['Red', 'Neutral', 'Blue'])
|
|
plt.title('Visualization of Image with -1, 0, 1')
|
|
plt.savefig("vis_event.png", format='png')
|
|
plt.close()
|
|
|
|
|
|
def get_sequences_ids(data_path):
|
|
"""
|
|
getting ids from .txt file.
|
|
args :
|
|
- data_path: .txt file.
|
|
return:
|
|
- ids: the sequences from .txt file.
|
|
"""
|
|
ids = []
|
|
with open(data_path, 'r') as sequence_ids:
|
|
ids.extend(map(str.strip, sequence_ids.readlines()))
|
|
|
|
return ids
|
|
|
|
|
|
def load_vidar_dat(filename, frame_cnt=None, size=(480, 680), reverse_spike=True):
|
|
'''
|
|
output: <class 'numpy.ndarray'> (frame_cnt, height, width) {0,1} float32
|
|
'''
|
|
array = np.fromfile(filename, dtype=np.uint8)
|
|
height, width = size
|
|
len_per_frame = height * width // 8
|
|
framecnt = frame_cnt if frame_cnt != None else len(array) // len_per_frame
|
|
|
|
spikes = []
|
|
for i in range(framecnt):
|
|
compr_frame = array[i * len_per_frame: (i + 1) * len_per_frame]
|
|
blist = []
|
|
for b in range(8):
|
|
blist.append(np.right_shift(np.bitwise_and(
|
|
compr_frame, np.left_shift(1, b)), b))
|
|
|
|
frame_ = np.stack(blist).transpose()
|
|
frame_ = frame_.reshape((height, width), order='C')
|
|
if reverse_spike:
|
|
frame_ = np.flipud(frame_)
|
|
spikes.append(frame_)
|
|
|
|
return np.array(spikes).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
def make_dir(path):
|
|
if not osp.exists(path):
|
|
os.makedirs(path)
|
|
return
|
|
|
|
def RawToSpike(video_seq, h, w, flipud=True):
|
|
video_seq = np.array(video_seq).astype(np.uint8)
|
|
img_size = h*w
|
|
img_num = len(video_seq)//(img_size//8)
|
|
SpikeMatrix = np.zeros([img_num, h, w], np.uint8)
|
|
pix_id = np.arange(0,h*w)
|
|
pix_id = np.reshape(pix_id, (h, w))
|
|
comparator = np.left_shift(1, np.mod(pix_id, 8))
|
|
byte_id = pix_id // 8
|
|
|
|
for img_id in np.arange(img_num):
|
|
id_start = img_id*img_size//8
|
|
id_end = id_start + img_size//8
|
|
cur_info = video_seq[id_start:id_end]
|
|
data = cur_info[byte_id]
|
|
result = np.bitwise_and(data, comparator)
|
|
if flipud:
|
|
SpikeMatrix[img_id, :, :] = np.flipud((result == comparator))
|
|
else:
|
|
SpikeMatrix[img_id, :, :] = (result == comparator)
|
|
|
|
return SpikeMatrix
|
|
|
|
def save_to_h5(SpikeMatrix, h5path):
|
|
f = h5py.File(h5path, 'w')
|
|
f['raw_spike'] = SpikeMatrix
|
|
f.close()
|
|
|
|
def dat_to_h5(dat_path, h5path, size=[436, 1024]):
|
|
f = open(dat_path, 'rb')
|
|
video_seq = f.read()
|
|
video_seq = np.frombuffer(video_seq, 'b')
|
|
sp_mat = RawToSpike(video_seq, size[0], size[1])
|
|
save_to_h5(sp_mat, h5path)
|
|
|
|
|
|
|
|
|
|
|
|
def read_gen(file_name):
|
|
ext = osp.splitext(file_name)[-1]
|
|
if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
|
|
|
|
return cv2.imread(file_name)
|
|
elif ext == '.bin' or ext == '.raw':
|
|
return np.load(file_name)
|
|
elif ext == '.flo':
|
|
return readFlow(file_name).astype(np.float32)
|
|
return []
|
|
|
|
|
|
def im2gray(im):
|
|
|
|
|
|
im = im.astype(np.float32) / 255.
|
|
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
|
|
im = np.expand_dims(im, axis=0)
|
|
return im
|
|
|
|
def im_color(im):
|
|
im = im.astype(np.float32) / 255.
|
|
im = im.transpose([2, 0, 1])
|
|
return im
|
|
|
|
TAG_CHAR = np.array([202021.25], np.float32)
|
|
def readFlow(fn):
|
|
""" Read .flo file in Middlebury format"""
|
|
|
|
|
|
|
|
|
|
|
|
with open(fn, 'rb') as f:
|
|
magic = np.fromfile(f, np.float32, count=1)
|
|
if 202021.25 != magic:
|
|
print('Magic number incorrect. Invalid .flo file')
|
|
return None
|
|
else:
|
|
w = np.fromfile(f, np.int32, count=1)
|
|
h = np.fromfile(f, np.int32, count=1)
|
|
|
|
data = np.fromfile(f, np.float32, count=2*int(w)*int(h))
|
|
|
|
|
|
return np.resize(data, (int(h), int(w), 2))
|
|
|
|
from contextlib import contextmanager
|
|
import time
|
|
import torch
|
|
|
|
@contextmanager
|
|
def timeblock(label):
|
|
torch.cuda.synchronize()
|
|
start = time.perf_counter()
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.cuda.synchronize()
|
|
end = time.perf_counter()
|
|
print('{} : {}'.format(label, end - start))
|
|
|
|
if __name__ == '__main__':
|
|
img_unpadded = torch.randn(8, 1, 260, 346)
|
|
img_padded = pad_to_square_and_32(img_unpadded, 0)
|
|
print(img_unpadded.shape, img_padded.shape)
|
|
|
|
|
|
info_dict = read_PKUdataset_info_to_dict('Dtracker/myaflow/dataset/statistics/PKU_Vidar_DVS_statistics.xlsx')
|
|
scene = '00047_rotation_5000K_800r'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|