Spaces:
Running
Running
File size: 18,020 Bytes
ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a ae2a01b c87565a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import torch
import torch.nn as nn
import torch.nn.functional as f
from torch.nn import init
import math
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, activation='relu', norm=None,
BN_momentum=0.1):
super(ConvLayer, self).__init__()
bias = False if norm == 'BN' else True
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias)
if activation is not None:
self.activation = getattr(torch, activation)
else:
self.activation = None
self.norm = norm
if norm == 'BN':
self.norm_layer = nn.BatchNorm2d(out_channels, momentum=BN_momentum)
elif norm == 'IN':
self.norm_layer = nn.InstanceNorm2d(out_channels, track_running_stats=True)
def forward(self, x):
out = self.conv2d(x)
if self.norm in ['BN', 'IN']:
out = self.norm_layer(out)
if self.activation is not None:
out = self.activation(out)
return out
class TransposedConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, activation='relu', norm=None):
super(TransposedConvLayer, self).__init__()
bias = False if norm == 'BN' else True
self.transposed_conv2d = nn.ConvTranspose2d(
in_channels, out_channels, kernel_size, stride=2, padding=padding, output_padding=1, bias=bias)
if activation is not None:
self.activation = getattr(torch, activation)
else:
self.activation = None
self.norm = norm
if norm == 'BN':
self.norm_layer = nn.BatchNorm2d(out_channels)
elif norm == 'IN':
self.norm_layer = nn.InstanceNorm2d(out_channels, track_running_stats=True)
def forward(self, x):
out = self.transposed_conv2d(x)
if self.norm in ['BN', 'IN']:
out = self.norm_layer(out)
if self.activation is not None:
out = self.activation(out)
return out
class UpsampleConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, activation='relu', norm=None):
super(UpsampleConvLayer, self).__init__()
bias = False if norm == 'BN' else True
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias)
if activation is not None:
self.activation = getattr(torch, activation)
else:
self.activation = None
self.norm = norm
if norm == 'BN':
self.norm_layer = nn.BatchNorm2d(out_channels)
elif norm == 'IN':
self.norm_layer = nn.InstanceNorm2d(out_channels, track_running_stats=True)
def forward(self, x):
x_upsampled = f.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
out = self.conv2d(x_upsampled)
if self.norm in ['BN', 'IN']:
out = self.norm_layer(out)
if self.activation is not None:
out = self.activation(out)
return out
class RecurrentConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0,
recurrent_block_type='convlstm', activation='relu', norm=None, BN_momentum=0.1):
super(RecurrentConvLayer, self).__init__()
assert(recurrent_block_type in ['convlstm', 'convgru'])
self.recurrent_block_type = recurrent_block_type
if self.recurrent_block_type == 'convlstm':
RecurrentBlock = ConvLSTM
else:
RecurrentBlock = ConvGRU
# self.conv = ConvLayer(in_channels, out_channels, kernel_size, stride, padding, activation, norm,
# BN_momentum=BN_momentum)
self.recurrent_block = RecurrentBlock(input_size=out_channels, hidden_size=out_channels, kernel_size=3)
def forward(self, x, prev_state):
# x = self.conv(x)
state = self.recurrent_block(x, prev_state)
x = state[0] if self.recurrent_block_type == 'convlstm' else state
return x, state
class Recurrent2ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0,
recurrent_block_type='convlstm', activation='relu', norm=None, BN_momentum=0.1):
super(Recurrent2ConvLayer, self).__init__()
assert(recurrent_block_type in ['convlstm', 'convgru'])
self.recurrent_block_type = recurrent_block_type
if self.recurrent_block_type == 'convlstm':
RecurrentBlock = ConvLSTM
else:
RecurrentBlock = ConvGRU
self.conv = ConvLayer(in_channels, out_channels, kernel_size, stride, padding, activation, norm,
BN_momentum=BN_momentum)
self.recurrent_block = RecurrentBlock(input_size=out_channels, hidden_size=out_channels, kernel_size=3)
def forward(self, x, prev_state):
x = self.conv(x)
state = self.recurrent_block(x, prev_state)
x = state[0] if self.recurrent_block_type == 'convlstm' else state
return x, state
class RecurrentPhasedConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0,
activation='relu', norm=None, BN_momentum=0.1):
super(RecurrentPhasedConvLayer, self).__init__()
self.conv = ConvLayer(in_channels, out_channels, kernel_size, stride, padding, activation, norm,
BN_momentum=BN_momentum)
self.recurrent_block = PhasedConvLSTMCell(input_channels=out_channels, hidden_channels=out_channels, kernel_size=3)
def forward(self, x, times, prev_state):
x = self.conv(x)
x, state = self.recurrent_block(x, times, prev_state)
return x, state
class DownsampleRecurrentConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, recurrent_block_type='convlstm', padding=0, activation='relu'):
super(DownsampleRecurrentConvLayer, self).__init__()
self.activation = getattr(torch, activation)
assert(recurrent_block_type in ['convlstm', 'convgru'])
self.recurrent_block_type = recurrent_block_type
if self.recurrent_block_type == 'convlstm':
RecurrentBlock = ConvLSTM
else:
RecurrentBlock = ConvGRU
self.recurrent_block = RecurrentBlock(input_size=in_channels, hidden_size=out_channels, kernel_size=kernel_size)
def forward(self, x, prev_state):
state = self.recurrent_block(x, prev_state)
x = state[0] if self.recurrent_block_type == 'convlstm' else state
x = f.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
return self.activation(x), state
# Residual block
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None, norm=None,
BN_momentum=0.1):
super(ResidualBlock, self).__init__()
bias = False if norm == 'BN' else True
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=bias)
self.norm = norm
if norm == 'BN':
self.bn1 = nn.BatchNorm2d(out_channels, momentum=BN_momentum)
self.bn2 = nn.BatchNorm2d(out_channels, momentum=BN_momentum)
elif norm == 'IN':
self.bn1 = nn.InstanceNorm2d(out_channels)
self.bn2 = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU(inplace=False)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=bias)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
if self.norm in ['BN', 'IN']:
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
if self.norm in ['BN', 'IN']:
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class PhasedLSTMCell(nn.Module):
"""Phased LSTM recurrent network cell.
"""
def __init__(
self,
hidden_size,
leak=0.001,
ratio_on=0.1,
period_init_min=0.02,
period_init_max=50.0
):
"""
Args:
hidden_size: int, The number of units in the Phased LSTM cell.
leak: float or scalar float Tensor with value in [0, 1]. Leak applied
during training.
ratio_on: float or scalar float Tensor with value in [0, 1]. Ratio of the
period during which the gates are open.
period_init_min: float or scalar float Tensor. With value > 0.
Minimum value of the initialized period.
The period values are initialized by drawing from the distribution:
e^U(log(period_init_min), log(period_init_max))
Where U(.,.) is the uniform distribution.
period_init_max: float or scalar float Tensor.
With value > period_init_min. Maximum value of the initialized period.
"""
super().__init__()
self.hidden_size = hidden_size
self.ratio_on = ratio_on
self.leak = leak
# initialize time-gating parameters
period = torch.exp(
torch.Tensor(hidden_size).uniform_(
math.log(period_init_min), math.log(period_init_max)
)
)
#self.tau = nn.Parameter(period)
self.register_parameter("tau", nn.Parameter(period))
phase = torch.Tensor(hidden_size).uniform_() * period
self.register_parameter("phase", nn.Parameter(phase))
self.phase.requires_grad = True
self.tau.requires_grad = True
#self.phase = nn.Parameter(phase)
def _compute_phi(self, t):
t_ = t.view(-1, 1).repeat(1, self.hidden_size)
phase_ = self.phase.view(1, -1).repeat(t.shape[0], 1)
tau_ = self.tau.view(1, -1).repeat(t.shape[0], 1)
tau_.to(t_.device)
phase_.to(t_.device)
phi = self._mod((t_ - phase_), tau_)
phi = torch.abs(phi) / tau_
return phi
def _mod(self, x, y):
"""Modulo function that propagates x gradients."""
return x + (torch.fmod(x, y) - x).detach()
def set_state(self, c, h):
self.h0 = h
self.c0 = c
def forward(self, c_s, h_s, t):
# print(c_s.size(), h_s.size(), t.size())
phi = self._compute_phi(t)
# Phase-related augmentations
k_up = 2 * phi / self.ratio_on
k_down = 2 - k_up
k_closed = self.leak * phi
k = torch.where(phi < self.ratio_on, k_down, k_closed)
k = torch.where(phi < 0.5 * self.ratio_on, k_up, k)
k = k.view(c_s.shape[0], -1)
c_s_new = k * c_s + (1 - k) * self.c0
h_s_new = k * h_s + (1 - k) * self.h0
return h_s_new, c_s_new
class ConvLSTM(nn.Module):
"""Adapted from: https://github.com/Atcold/pytorch-CortexNet/blob/master/model/ConvLSTMCell.py """
def __init__(self, input_size, hidden_size, kernel_size):
super(ConvLSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
pad = kernel_size // 2
# cache a tensor filled with zeros to avoid reallocating memory at each inference step if --no-recurrent is enabled
self.zero_tensors = {}
self.Gates = nn.Conv2d(input_size + hidden_size, 4 * hidden_size, kernel_size, padding=pad)
def forward(self, input_, prev_state=None):
# get batch and spatial sizes
batch_size = input_.data.size()[0]
spatial_size = input_.data.size()[2:]
# generate empty prev_state, if None is provided
if prev_state is None:
# create the zero tensor if it has not been created already
state_size = tuple([batch_size, self.hidden_size] + list(spatial_size))
if state_size not in self.zero_tensors:
# allocate a tensor with size `spatial_size`, filled with zero (if it has not been allocated already)
self.zero_tensors[state_size] = (
torch.zeros(state_size, dtype=input_.dtype).to(input_.device),
torch.zeros(state_size, dtype=input_.dtype).to(input_.device)
)
prev_state = self.zero_tensors[tuple(state_size)]
prev_hidden, prev_cell = prev_state
# data size is [batch, channel, height, width]
stacked_inputs = torch.cat((input_, prev_hidden), 1)
gates = self.Gates(stacked_inputs)
# chunk across channel dimension
in_gate, remember_gate, out_gate, cell_gate = gates.chunk(4, 1)
# apply sigmoid non linearity
in_gate = torch.sigmoid(in_gate)
remember_gate = torch.sigmoid(remember_gate)
out_gate = torch.sigmoid(out_gate)
# apply tanh non linearity
cell_gate = torch.tanh(cell_gate)
# compute current cell and hidden state
cell = (remember_gate * prev_cell) + (in_gate * cell_gate)
hidden = out_gate * torch.tanh(cell)
return hidden, cell
class PhasedConvLSTMCell(nn.Module):
def __init__(
self,
input_channels,
hidden_channels,
kernel_size=3
):
super().__init__()
self.hidden_channels = hidden_channels
self.lstm = ConvLSTM(
input_size=input_channels,
hidden_size=hidden_channels,
kernel_size=kernel_size
)
# as soon as spatial dimension is known, phased lstm cell is instantiated
self.phased_cell = None
self.hidden_size = None
def forward(self, input, times, prev_state=None):
# input: B x C x H x W
# times: B
# returns: output: B x C_out x H x W, prev_state: (B x C_out x H x W, B x C_out x H x W)
B, C, H, W = input.shape
if self.hidden_size is None:
self.hidden_size = self.hidden_channels * W * H
self.phased_cell = PhasedLSTMCell(hidden_size=self.hidden_size)
self.phased_cell = self.phased_cell.to(input.device)
self.phased_cell.requires_grad = True
if prev_state is None:
h0 = input.new_zeros((B, self.hidden_channels, H, W))
c0 = input.new_zeros((B, self.hidden_channels, H, W))
else:
c0, h0 = prev_state
self.phased_cell.set_state(c0.view(B, -1), h0.view(B, -1))
c_t, h_t = self.lstm(input, (c0, h0))
# reshape activation maps such that phased lstm can use them
(c_s, h_s) = self.phased_cell(c_t.view(B, -1), h_t.view(B, -1), times)
# reshape to feed to conv lstm
c_s = c_s.view(B, -1, H, W)
h_s = h_s.view(B, -1, H, W)
return h_t, (c_s, h_s)
class ConvGRU(nn.Module):
"""
Generate a convolutional GRU cell
Adapted from: https://github.com/jacobkimmel/pytorch_convgru/blob/master/convgru.py
"""
def __init__(self, input_size, hidden_size, kernel_size):
super().__init__()
padding = kernel_size // 2
self.input_size = input_size
self.hidden_size = hidden_size
self.reset_gate = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size, padding=padding)
self.update_gate = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size, padding=padding)
self.out_gate = nn.Conv2d(input_size + hidden_size, hidden_size, kernel_size, padding=padding)
init.orthogonal_(self.reset_gate.weight)
init.orthogonal_(self.update_gate.weight)
init.orthogonal_(self.out_gate.weight)
init.constant_(self.reset_gate.bias, 0.)
init.constant_(self.update_gate.bias, 0.)
init.constant_(self.out_gate.bias, 0.)
def forward(self, input_, prev_state):
# get batch and spatial sizes
batch_size = input_.data.size()[0]
spatial_size = input_.data.size()[2:]
# generate empty prev_state, if None is provided
if prev_state is None:
state_size = [batch_size, self.hidden_size] + list(spatial_size)
prev_state = torch.zeros(state_size, dtype=input_.dtype).to(input_.device)
# data size is [batch, channel, height, width]
stacked_inputs = torch.cat([input_, prev_state], dim=1)
update = torch.sigmoid(self.update_gate(stacked_inputs))
reset = torch.sigmoid(self.reset_gate(stacked_inputs))
out_inputs = torch.tanh(self.out_gate(torch.cat([input_, prev_state * reset], dim=1)))
new_state = prev_state * (1 - update) + out_inputs * update
return new_state
class RecurrentResidualLayer(nn.Module):
def __init__(self, in_channels, out_channels,
recurrent_block_type='convlstm', norm=None, BN_momentum=0.1):
super(RecurrentResidualLayer, self).__init__()
assert(recurrent_block_type in ['convlstm', 'convgru'])
self.recurrent_block_type = recurrent_block_type
if self.recurrent_block_type == 'convlstm':
RecurrentBlock = ConvLSTM
else:
RecurrentBlock = ConvGRU
self.conv = ResidualBlock(in_channels=in_channels,
out_channels=out_channels,
norm=norm,
BN_momentum=BN_momentum)
self.recurrent_block = RecurrentBlock(input_size=out_channels,
hidden_size=out_channels,
kernel_size=3)
def forward(self, x, prev_state):
x = self.conv(x)
state = self.recurrent_block(x, prev_state)
x = state[0] if self.recurrent_block_type == 'convlstm' else state
return x, state |