Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
import numpy as np | |
from timm.models.layers import DropPath, trunc_normal_ | |
from functools import reduce, lru_cache | |
from operator import mul | |
from einops import rearrange | |
from submodules import ResidualBlock | |
class residual_feature_generator(nn.Module): | |
def __init__(self, dim): | |
super(residual_feature_generator, self).__init__() | |
self.dim = dim | |
self.resblock1 = ResidualBlock(dim, dim, 1, norm='BN') | |
self.resblock2 = ResidualBlock(dim, dim, 1, norm='BN') | |
self.resblock3 = ResidualBlock(dim, dim, 1, norm='BN') | |
self.resblock4 = ResidualBlock(dim, dim, 1, norm='BN') | |
def forward(self, x): | |
out = self.resblock1(x) | |
out = self.resblock2(out) | |
out = self.resblock3(out) | |
out = self.resblock4(out) | |
return out | |
class feature_generator(nn.Module): | |
def __init__(self, dim, kernel_size=3): | |
super(feature_generator, self).__init__() | |
self.dim = dim | |
self.kernel_size = kernel_size | |
self.conv1 = nn.Conv2d(in_channels=dim, | |
out_channels=dim, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=(kernel_size-1)//2) | |
self.conv2 = nn.Conv2d(in_channels=dim, | |
out_channels=dim, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=(kernel_size-1)//2) | |
self.conv3 = nn.Conv2d(in_channels=dim, | |
out_channels=dim, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=(kernel_size-1)//2) | |
self.conv4 = nn.Conv2d(in_channels=dim, | |
out_channels=dim, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=(kernel_size-1)//2) | |
self.bn1 = nn.BatchNorm2d(dim) | |
self.bn2 = nn.BatchNorm2d(dim) | |
self.bn3 = nn.BatchNorm2d(dim) | |
self.bn4 = nn.BatchNorm2d(dim) | |
def forward(self, x): | |
out = F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.01, inplace=False) | |
out = F.leaky_relu(self.bn2(self.conv2(out)), negative_slope=0.01, inplace=False) | |
out = F.leaky_relu(self.bn3(self.conv3(out)), negative_slope=0.01, inplace=False) | |
out = F.leaky_relu(self.bn4(self.conv4(out)), negative_slope=0.01, inplace=False) | |
return out | |
class PatchEmbedLocalGlobal(nn.Module): | |
def __init__(self, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None): | |
super().__init__() | |
self.patch_size = patch_size | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.num_blocks = self.in_chans // patch_size[0] | |
self.head = nn.Conv2d(in_chans // self.num_blocks, embed_dim // 2, kernel_size=3, stride=1, padding=1) | |
self.global_head = nn.Conv2d(in_chans, embed_dim // 2, kernel_size=3, stride=1, padding=1) | |
self.residual_encoding = residual_feature_generator(embed_dim//2) | |
self.global_residual_encoding = residual_feature_generator(embed_dim//2) | |
self.proj = nn.Conv2d(embed_dim//2, embed_dim//2, kernel_size=3, stride=patch_size[1:], padding=1) | |
self.global_proj = nn.Conv2d(embed_dim//2, embed_dim//2, kernel_size=3, stride=patch_size[1:], padding=1) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
# patches_resolution = [224 // patch_size[1], 224 // patch_size[2]] | |
# self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, self.num_blocks, patches_resolution[0], patches_resolution[1])) | |
# trunc_normal_(self.absolute_pos_embed, std=.02) | |
def forward(self, x): | |
"""Forward function.""" | |
# padding | |
B, C, H, W = x.size() | |
# if W % self.patch_size[2] != 0: | |
# x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) | |
# if H % self.patch_size[1] != 0: | |
# x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) | |
# if D % self.patch_size[0] != 0: | |
# x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) | |
xs = x.chunk(self.num_blocks, 1) | |
outs = [] | |
outi_global = self.global_head(x) | |
outi_global = self.global_residual_encoding(outi_global) | |
outi_global = self.global_proj(outi_global) | |
for i in range(self.num_blocks): | |
outi_local = self.head(xs[i]) | |
outi_local = self.residual_encoding(outi_local) | |
outi_local = self.proj(outi_local) | |
outi = torch.cat([outi_local, outi_global], dim=1) | |
outi = outi.unsqueeze(2) | |
outs.append(outi) | |
out = torch.cat(outs, dim=2) # B, 96, 4, H, W | |
# x = self.proj(x) # B C D Wh Ww | |
if self.norm is not None: | |
D, Wh, Ww = out.size(2), out.size(3), out.size(4) | |
out = out.flatten(2).transpose(1, 2) | |
out = self.norm(out) | |
out = out.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) | |
return out | |
class PatchEmbedConv(nn.Module): | |
def __init__(self, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None): | |
super().__init__() | |
self.patch_size = patch_size | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.num_blocks = self.in_chans // patch_size[0] | |
self.head = nn.Conv2d(in_chans // self.num_blocks, embed_dim, kernel_size=3, stride=1, padding=1) | |
self.residual_encoding = residual_feature_generator(embed_dim) | |
self.proj = nn.Conv2d(embed_dim, embed_dim, kernel_size=3, stride=patch_size[1:], padding=1) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
"""Forward function.""" | |
# padding | |
B, C, H, W = x.size() | |
# if W % self.patch_size[2] != 0: | |
# x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) | |
# if H % self.patch_size[1] != 0: | |
# x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) | |
# if D % self.patch_size[0] != 0: | |
# x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) | |
xs = x.chunk(self.num_blocks, 1) | |
outs = [] | |
for i in range(self.num_blocks): | |
outi = self.head(xs[i]) | |
outi = self.residual_encoding(outi) | |
outi = self.proj(outi) | |
outi = outi.unsqueeze(2) | |
outs.append(outi) | |
out = torch.cat(outs, dim=2) # B, 96, 4, H, W | |
# x = self.proj(x) # B C D Wh Ww | |
if self.norm is not None: | |
D, Wh, Ww = out.size(2), out.size(3), out.size(4) | |
out = out.flatten(2).transpose(1, 2) | |
out = self.norm(out) | |
out = out.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) | |
return out | |
class Mlp(nn.Module): | |
""" Multilayer perceptron.""" | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (B, D, H, W, C) | |
window_size (tuple[int]): window size | |
Returns: | |
windows: (B*num_windows, window_size*window_size, C) | |
""" | |
B, D, H, W, C = x.shape | |
x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C) | |
windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C) | |
return windows | |
def window_reverse(windows, window_size, B, D, H, W): | |
""" | |
Args: | |
windows: (B*num_windows, window_size, window_size, C) | |
window_size (tuple[int]): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, D, H, W, C) | |
""" | |
x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1) | |
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) | |
return x | |
def get_window_size(x_size, window_size, shift_size=None): | |
use_window_size = list(window_size) | |
if shift_size is not None: | |
use_shift_size = list(shift_size) | |
for i in range(len(x_size)): | |
if x_size[i] <= window_size[i]: | |
use_window_size[i] = x_size[i] | |
if shift_size is not None: | |
use_shift_size[i] = 0 | |
if shift_size is None: | |
return tuple(use_window_size) | |
else: | |
return tuple(use_window_size), tuple(use_shift_size) | |
class WindowAttention3D(nn.Module): | |
""" Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The temporal length, height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__(self, dim, window_size, num_heads, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wd, Wh, Ww | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads)) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH | |
# get pair-wise relative position index for each token inside the window | |
coords_d = torch.arange(self.window_size[0]) | |
coords_h = torch.arange(self.window_size[1]) | |
coords_w = torch.arange(self.window_size[2]) | |
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) # 3, Wd, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3 | |
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 2] += self.window_size[2] - 1 | |
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) | |
relative_coords[:, :, 1] *= (2 * self.window_size[2] - 1) | |
relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
trunc_normal_(self.relative_position_bias_table, std=.02) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, mask=None): | |
""" Forward function. | |
Args: | |
x: input features with shape of (num_windows*B, N, C) | |
mask: (0/-inf) mask with shape of (num_windows, N, N) or None | |
""" | |
B_, N, C = x.shape | |
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index[:N, :N].reshape(-1)].reshape( | |
N, N, -1) # Wd*Wh*Ww,Wd*Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N | |
if mask is not None: | |
nW = mask.shape[0] | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
# print('attn: ', attn.shape, ', v: ', v.shape, ', x: ', x.shape) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class SwinTransformerBlock3D(nn.Module): | |
""" Swin Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
window_size (tuple[int]): Window size. | |
shift_size (tuple[int]): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, dim, num_heads, window_size=(2,7,7), shift_size=(0,0,0), | |
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_checkpoint=False): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
self.use_checkpoint=use_checkpoint | |
assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size" | |
assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size" | |
assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size" | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention3D( | |
dim, window_size=self.window_size, num_heads=num_heads, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward_part1(self, x, mask_matrix): | |
B, D, H, W, C = x.shape | |
window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size) | |
# print('window_size: ', window_size, ', shift_size: ', shift_size) | |
x = self.norm1(x) | |
# pad feature maps to multiples of window size | |
pad_l = pad_t = pad_d0 = 0 | |
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0] | |
pad_b = (window_size[1] - H % window_size[1]) % window_size[1] | |
pad_r = (window_size[2] - W % window_size[2]) % window_size[2] | |
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1)) | |
_, Dp, Hp, Wp, _ = x.shape | |
# cyclic shift | |
if any(i > 0 for i in shift_size): | |
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)) | |
attn_mask = mask_matrix | |
else: | |
shifted_x = x | |
attn_mask = None | |
# partition windows | |
x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C | |
# print('shifted_x: ', shifted_x.shape, 'x_windows: ', x_windows.shape) | |
# W-MSA/SW-MSA | |
attn_windows = self.attn(x_windows, mask=attn_mask) # B*nW, Wd*Wh*Ww, C | |
# merge windows | |
attn_windows = attn_windows.view(-1, *(window_size+(C,))) | |
# print('attn_windows: ', attn_windows.shape) | |
shifted_x = window_reverse(attn_windows, window_size, B, Dp, Hp, Wp) # B D' H' W' C | |
# reverse cyclic shift | |
if any(i > 0 for i in shift_size): | |
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)) | |
else: | |
x = shifted_x | |
if pad_d1 >0 or pad_r > 0 or pad_b > 0: | |
x = x[:, :D, :H, :W, :].contiguous() | |
return x | |
def forward_part2(self, x): | |
return self.drop_path(self.mlp(self.norm2(x))) | |
def forward(self, x, mask_matrix): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, D, H, W, C). | |
mask_matrix: Attention mask for cyclic shift. | |
""" | |
shortcut = x | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix) | |
else: | |
x = self.forward_part1(x, mask_matrix) | |
x = shortcut + self.drop_path(x) | |
if self.use_checkpoint: | |
x = x + checkpoint.checkpoint(self.forward_part2, x) | |
else: | |
x = x + self.forward_part2(x) | |
return x | |
class PatchMerging(nn.Module): | |
""" Patch Merging Layer | |
Args: | |
dim (int): Number of input channels. | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, dim, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def forward(self, x): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, D, H, W, C). | |
""" | |
B, D, H, W, C = x.shape | |
# padding | |
pad_input = (H % 2 == 1) or (W % 2 == 1) | |
if pad_input: | |
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) | |
x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C | |
x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C | |
x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C | |
x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C | |
x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C | |
x = self.norm(x) | |
x = self.reduction(x) | |
return x | |
# cache each stage results | |
def compute_mask(D, H, W, window_size, shift_size, device): | |
img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1 | |
cnt = 0 | |
for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0],None): | |
for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1],None): | |
for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2],None): | |
img_mask[:, d, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1 | |
mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2] | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
return attn_mask | |
class BasicLayer(nn.Module): | |
""" A basic Swin Transformer layer for one stage. | |
Args: | |
dim (int): Number of feature channels | |
depth (int): Depths of this stage. | |
num_heads (int): Number of attention head. | |
window_size (tuple[int]): Local window size. Default: (1,7,7). | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
""" | |
def __init__(self, | |
dim, | |
depth, | |
num_heads, | |
window_size=(1,7,7), | |
mlp_ratio=4., | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
use_checkpoint=False): | |
super().__init__() | |
self.window_size = window_size | |
self.shift_size = tuple(i // 2 for i in window_size) | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
SwinTransformerBlock3D( | |
dim=dim, | |
num_heads=num_heads, | |
window_size=window_size, | |
shift_size=(0,0,0) if (i % 2 == 0) else self.shift_size, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
norm_layer=norm_layer, | |
use_checkpoint=use_checkpoint, | |
) | |
for i in range(depth)]) | |
self.downsample = downsample | |
if self.downsample is not None: | |
self.downsample = downsample(dim=dim, norm_layer=norm_layer) | |
def forward(self, x): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, C, D, H, W). | |
""" | |
# calculate attention mask for SW-MSA | |
B, C, D, H, W = x.shape | |
window_size, shift_size = get_window_size((D,H,W), self.window_size, self.shift_size) | |
x = rearrange(x, 'b c d h w -> b d h w c') | |
Dp = int(np.ceil(D / window_size[0])) * window_size[0] | |
Hp = int(np.ceil(H / window_size[1])) * window_size[1] | |
Wp = int(np.ceil(W / window_size[2])) * window_size[2] | |
attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device) | |
for blk in self.blocks: | |
x = blk(x, attn_mask) | |
# print(x.shape) | |
x = x.view(B, D, H, W, -1) | |
if self.downsample is not None: | |
x_out = self.downsample(x) | |
else: | |
x_out = x | |
x_out = rearrange(x_out, 'b d h w c -> b c d h w') | |
return x_out, x | |
class PatchEmbed3D(nn.Module): | |
""" Video to Patch Embedding. | |
Args: | |
patch_size (int): Patch token size. Default: (2,4,4). | |
in_chans (int): Number of input video channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__(self, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None): | |
super().__init__() | |
self.patch_size = patch_size | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
# self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
self.proj = nn.Conv3d(1, embed_dim, kernel_size=patch_size, stride=patch_size) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
"""Forward function.""" | |
# padding | |
x = x.unsqueeze(1) | |
_, _, D, H, W = x.size() | |
if W % self.patch_size[2] != 0: | |
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) | |
if H % self.patch_size[1] != 0: | |
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) | |
if D % self.patch_size[0] != 0: | |
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) | |
x = self.proj(x) # B C D Wh Ww | |
if self.norm is not None: | |
D, Wh, Ww = x.size(2), x.size(3), x.size(4) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) | |
return x | |
class SwinTransformer3D(nn.Module): | |
""" Swin Transformer backbone. | |
Args: | |
patch_size (int | tuple(int)): Patch size. Default: (4,4,4). | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
depths (tuple[int]): Depths of each Swin Transformer stage. | |
num_heads (tuple[int]): Number of attention head of each stage. | |
window_size (int): Window size. Default: 7. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee | |
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. | |
drop_rate (float): Dropout rate. | |
attn_drop_rate (float): Attention dropout rate. Default: 0. | |
drop_path_rate (float): Stochastic depth rate. Default: 0.2. | |
norm_layer: Normalization layer. Default: nn.LayerNorm. | |
patch_norm (bool): If True, add normalization after patch embedding. Default: False. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. | |
""" | |
def __init__(self, | |
pretrained=None, | |
pretrained2d=True, | |
patch_size=(4,4,4), | |
in_chans=3, | |
embed_dim=96, | |
depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 24], | |
window_size=(2,7,7), | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0.2, | |
norm_layer=nn.LayerNorm, | |
patch_norm=False, | |
out_indices=(0,1,2,3), | |
frozen_stages=-1, | |
use_checkpoint=False, | |
new_version=0): | |
super().__init__() | |
self.pretrained = pretrained | |
self.pretrained2d = pretrained2d | |
self.num_layers = len(depths) | |
self.embed_dim = embed_dim | |
self.patch_norm = patch_norm | |
self.frozen_stages = frozen_stages | |
self.window_size = window_size | |
self.patch_size = patch_size | |
self.out_indices = out_indices | |
# split image into non-overlapping patches | |
if new_version==3: | |
print("---- new version 3 ----") | |
self.patch_embed = PatchEmbedConv( | |
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None) | |
elif new_version==4: | |
print("---- new version 4 ----") | |
self.patch_embed = PatchEmbedLocalGlobal( | |
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None) | |
else: | |
print("---- old version ----") | |
self.patch_embed = PatchEmbed3D( | |
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = BasicLayer( | |
dim=int(embed_dim * 2**i_layer), | |
depth=depths[i_layer], | |
num_heads=num_heads[i_layer], | |
window_size=window_size, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
norm_layer=norm_layer, | |
downsample=PatchMerging if i_layer<self.num_layers-1 else None, | |
use_checkpoint=use_checkpoint) | |
self.layers.append(layer) | |
# self.num_features = int(embed_dim * 2**(self.num_layers-1)) | |
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] | |
self.num_features = num_features | |
# add a norm layer for each output | |
# self.norm = norm_layer(self.num_features) | |
# add a norm layer for each output | |
for i_layer in self.out_indices: | |
layer = norm_layer(self.num_features[i_layer]) | |
layer_name = f'norm{i_layer}' | |
self.add_module(layer_name, layer) | |
def inflate_weights(self, logger): | |
"""Inflate the swin2d parameters to swin3d. | |
The differences between swin3d and swin2d mainly lie in an extra | |
axis. To utilize the pretrained parameters in 2d model, | |
the weight of swin2d models should be inflated to fit in the shapes of | |
the 3d counterpart. | |
Args: | |
logger (logging.Logger): The logger used to print | |
debugging infomation. | |
""" | |
checkpoint = torch.load(self.pretrained, map_location='cpu') | |
state_dict = checkpoint['model'] | |
# delete relative_position_index since we always re-init it | |
relative_position_index_keys = [k for k in state_dict.keys() if "relative_position_index" in k] | |
for k in relative_position_index_keys: | |
del state_dict[k] | |
# delete attn_mask since we always re-init it | |
attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k] | |
for k in attn_mask_keys: | |
del state_dict[k] | |
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).repeat(1,1,self.patch_size[0],1,1) / self.patch_size[0] | |
# bicubic interpolate relative_position_bias_table if not match | |
relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k] | |
for k in relative_position_bias_table_keys: | |
relative_position_bias_table_pretrained = state_dict[k] | |
relative_position_bias_table_current = self.state_dict()[k] | |
L1, nH1 = relative_position_bias_table_pretrained.size() | |
L2, nH2 = relative_position_bias_table_current.size() | |
L2 = (2*self.window_size[1]-1) * (2*self.window_size[2]-1) | |
wd = self.window_size[0] | |
if nH1 != nH2: | |
logger.warning(f"Error in loading {k}, passing") | |
else: | |
if L1 != L2: | |
S1 = int(L1 ** 0.5) | |
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate( | |
relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(2*self.window_size[1]-1, 2*self.window_size[2]-1), | |
mode='bicubic') | |
relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0) | |
state_dict[k] = relative_position_bias_table_pretrained.repeat(2*wd-1,1) | |
msg = self.load_state_dict(state_dict, strict=False) | |
logger.info(msg) | |
logger.info(f"=> loaded successfully '{self.pretrained}'") | |
del checkpoint | |
torch.cuda.empty_cache() | |
def init_weights(self, pretrained=None): | |
"""Initialize the weights in backbone. | |
Args: | |
pretrained (str, optional): Path to pre-trained weights. | |
Defaults to None. | |
""" | |
def _init_weights(m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
if pretrained: | |
self.pretrained = pretrained | |
if isinstance(self.pretrained, str): | |
self.apply(_init_weights) | |
logger = get_root_logger() | |
logger.info(f'load model from: {self.pretrained}') | |
if self.pretrained2d: | |
# Inflate 2D model into 3D model. | |
self.inflate_weights(logger) | |
else: | |
# Directly load 3D model. | |
load_checkpoint(self, self.pretrained, strict=False, logger=logger) | |
elif self.pretrained is None: | |
self.apply(_init_weights) | |
else: | |
raise TypeError('pretrained must be a str or None') | |
def forward(self, x): | |
"""Forward function.""" | |
x = self.patch_embed(x) | |
# print(x.shape) | |
x = self.pos_drop(x) | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x, out_x = layer(x.contiguous()) | |
# print('---- ', out_x.shape) | |
if i in self.out_indices: | |
norm_layer = getattr(self, f'norm{i}') | |
out_x = norm_layer(out_x) | |
_, Ti, Hi, Wi, Ci = out_x.shape | |
out = rearrange(out_x, 'n d h w c -> n c d h w') | |
outs.append(out) | |
return tuple(outs) |