Spaces:
Running
Running
Upload dinov2.py
Browse files
dinov2.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
9 |
+
|
10 |
+
from functools import partial
|
11 |
+
import math
|
12 |
+
import logging
|
13 |
+
from typing import Sequence, Tuple, Union, Callable
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.utils.checkpoint
|
18 |
+
from torch.nn.init import trunc_normal_
|
19 |
+
|
20 |
+
from dinov2.layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.getLogger("dinov2")
|
24 |
+
|
25 |
+
|
26 |
+
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
27 |
+
if not depth_first and include_root:
|
28 |
+
fn(module=module, name=name)
|
29 |
+
for child_name, child_module in module.named_children():
|
30 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
31 |
+
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
32 |
+
if depth_first and include_root:
|
33 |
+
fn(module=module, name=name)
|
34 |
+
return module
|
35 |
+
|
36 |
+
|
37 |
+
class BlockChunk(nn.ModuleList):
|
38 |
+
def forward(self, x):
|
39 |
+
for b in self:
|
40 |
+
x = b(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
class DinoVisionTransformer(nn.Module):
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
img_size=224,
|
48 |
+
patch_size=16,
|
49 |
+
in_chans=3,
|
50 |
+
embed_dim=768,
|
51 |
+
depth=12,
|
52 |
+
num_heads=12,
|
53 |
+
mlp_ratio=4.0,
|
54 |
+
qkv_bias=True,
|
55 |
+
ffn_bias=True,
|
56 |
+
proj_bias=True,
|
57 |
+
drop_path_rate=0.0,
|
58 |
+
drop_path_uniform=False,
|
59 |
+
init_values=None, # for layerscale: None or 0 => no layerscale
|
60 |
+
embed_layer=PatchEmbed,
|
61 |
+
act_layer=nn.GELU,
|
62 |
+
block_fn=Block,
|
63 |
+
ffn_layer="mlp",
|
64 |
+
block_chunks=1,
|
65 |
+
num_register_tokens=0,
|
66 |
+
interpolate_antialias=False,
|
67 |
+
interpolate_offset=0.1,
|
68 |
+
):
|
69 |
+
"""
|
70 |
+
Args:
|
71 |
+
img_size (int, tuple): input image size
|
72 |
+
patch_size (int, tuple): patch size
|
73 |
+
in_chans (int): number of input channels
|
74 |
+
embed_dim (int): embedding dimension
|
75 |
+
depth (int): depth of transformer
|
76 |
+
num_heads (int): number of attention heads
|
77 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
78 |
+
qkv_bias (bool): enable bias for qkv if True
|
79 |
+
proj_bias (bool): enable bias for proj in attn if True
|
80 |
+
ffn_bias (bool): enable bias for ffn if True
|
81 |
+
drop_path_rate (float): stochastic depth rate
|
82 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
83 |
+
weight_init (str): weight init scheme
|
84 |
+
init_values (float): layer-scale init values
|
85 |
+
embed_layer (nn.Module): patch embedding layer
|
86 |
+
act_layer (nn.Module): MLP activation layer
|
87 |
+
block_fn (nn.Module): transformer block class
|
88 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
89 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
90 |
+
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
|
91 |
+
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
|
92 |
+
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
|
93 |
+
"""
|
94 |
+
super().__init__()
|
95 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
96 |
+
|
97 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
98 |
+
self.num_tokens = 1
|
99 |
+
self.n_blocks = depth
|
100 |
+
self.num_heads = num_heads
|
101 |
+
self.patch_size = patch_size
|
102 |
+
self.num_register_tokens = num_register_tokens
|
103 |
+
self.interpolate_antialias = interpolate_antialias
|
104 |
+
self.interpolate_offset = interpolate_offset
|
105 |
+
|
106 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
107 |
+
num_patches = self.patch_embed.num_patches
|
108 |
+
|
109 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
110 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
111 |
+
assert num_register_tokens >= 0
|
112 |
+
self.register_tokens = (
|
113 |
+
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
|
114 |
+
)
|
115 |
+
|
116 |
+
if drop_path_uniform is True:
|
117 |
+
dpr = [drop_path_rate] * depth
|
118 |
+
else:
|
119 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
120 |
+
|
121 |
+
if ffn_layer == "mlp":
|
122 |
+
logger.info("using MLP layer as FFN")
|
123 |
+
ffn_layer = Mlp
|
124 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
125 |
+
logger.info("using SwiGLU layer as FFN")
|
126 |
+
ffn_layer = SwiGLUFFNFused
|
127 |
+
elif ffn_layer == "identity":
|
128 |
+
logger.info("using Identity layer as FFN")
|
129 |
+
|
130 |
+
def f(*args, **kwargs):
|
131 |
+
return nn.Identity()
|
132 |
+
|
133 |
+
ffn_layer = f
|
134 |
+
else:
|
135 |
+
raise NotImplementedError
|
136 |
+
|
137 |
+
blocks_list = [
|
138 |
+
block_fn(
|
139 |
+
dim=embed_dim,
|
140 |
+
num_heads=num_heads,
|
141 |
+
mlp_ratio=mlp_ratio,
|
142 |
+
qkv_bias=qkv_bias,
|
143 |
+
proj_bias=proj_bias,
|
144 |
+
ffn_bias=ffn_bias,
|
145 |
+
drop_path=dpr[i],
|
146 |
+
norm_layer=norm_layer,
|
147 |
+
act_layer=act_layer,
|
148 |
+
ffn_layer=ffn_layer,
|
149 |
+
init_values=init_values,
|
150 |
+
)
|
151 |
+
for i in range(depth)
|
152 |
+
]
|
153 |
+
if block_chunks > 0:
|
154 |
+
self.chunked_blocks = True
|
155 |
+
chunked_blocks = []
|
156 |
+
chunksize = depth // block_chunks
|
157 |
+
for i in range(0, depth, chunksize):
|
158 |
+
# this is to keep the block index consistent if we chunk the block list
|
159 |
+
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
160 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
161 |
+
else:
|
162 |
+
self.chunked_blocks = False
|
163 |
+
self.blocks = nn.ModuleList(blocks_list)
|
164 |
+
|
165 |
+
self.norm = norm_layer(embed_dim)
|
166 |
+
self.head = nn.Identity()
|
167 |
+
|
168 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
169 |
+
|
170 |
+
self.init_weights()
|
171 |
+
|
172 |
+
def init_weights(self):
|
173 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
174 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
175 |
+
if self.register_tokens is not None:
|
176 |
+
nn.init.normal_(self.register_tokens, std=1e-6)
|
177 |
+
named_apply(init_weights_vit_timm, self)
|
178 |
+
|
179 |
+
def interpolate_pos_encoding(self, x, w, h):
|
180 |
+
previous_dtype = x.dtype
|
181 |
+
npatch = x.shape[1] - 1
|
182 |
+
N = self.pos_embed.shape[1] - 1
|
183 |
+
if npatch == N and w == h:
|
184 |
+
return self.pos_embed
|
185 |
+
pos_embed = self.pos_embed.float()
|
186 |
+
class_pos_embed = pos_embed[:, 0]
|
187 |
+
patch_pos_embed = pos_embed[:, 1:]
|
188 |
+
dim = x.shape[-1]
|
189 |
+
w0 = w // self.patch_size
|
190 |
+
h0 = h // self.patch_size
|
191 |
+
M = int(math.sqrt(N)) # Recover the number of patches in each dimension
|
192 |
+
assert N == M * M
|
193 |
+
kwargs = {}
|
194 |
+
if self.interpolate_offset:
|
195 |
+
# Historical kludge: add a small number to avoid floating point error in the interpolation, see https://github.com/facebookresearch/dino/issues/8
|
196 |
+
# Note: still needed for backward-compatibility, the underlying operators are using both output size and scale factors
|
197 |
+
sx = float(w0 + self.interpolate_offset) / M
|
198 |
+
sy = float(h0 + self.interpolate_offset) / M
|
199 |
+
kwargs["scale_factor"] = (sx, sy)
|
200 |
+
else:
|
201 |
+
# Simply specify an output size instead of a scale factor
|
202 |
+
kwargs["size"] = (w0, h0)
|
203 |
+
patch_pos_embed = nn.functional.interpolate(
|
204 |
+
patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2),
|
205 |
+
mode="bicubic",
|
206 |
+
antialias=self.interpolate_antialias,
|
207 |
+
**kwargs,
|
208 |
+
)
|
209 |
+
assert (w0, h0) == patch_pos_embed.shape[-2:]
|
210 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
211 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
212 |
+
|
213 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
214 |
+
B, nc, w, h = x.shape
|
215 |
+
x = self.patch_embed(x)
|
216 |
+
if masks is not None:
|
217 |
+
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
218 |
+
|
219 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
220 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
221 |
+
|
222 |
+
if self.register_tokens is not None:
|
223 |
+
x = torch.cat(
|
224 |
+
(
|
225 |
+
x[:, :1],
|
226 |
+
self.register_tokens.expand(x.shape[0], -1, -1),
|
227 |
+
x[:, 1:],
|
228 |
+
),
|
229 |
+
dim=1,
|
230 |
+
)
|
231 |
+
|
232 |
+
return x
|
233 |
+
|
234 |
+
def forward_features_list(self, x_list, masks_list):
|
235 |
+
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
236 |
+
for blk in self.blocks:
|
237 |
+
x = blk(x)
|
238 |
+
|
239 |
+
all_x = x
|
240 |
+
output = []
|
241 |
+
for x, masks in zip(all_x, masks_list):
|
242 |
+
x_norm = self.norm(x)
|
243 |
+
output.append(
|
244 |
+
{
|
245 |
+
"x_norm_clstoken": x_norm[:, 0],
|
246 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
247 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
248 |
+
"x_prenorm": x,
|
249 |
+
"masks": masks,
|
250 |
+
}
|
251 |
+
)
|
252 |
+
return output
|
253 |
+
|
254 |
+
def forward_features(self, x, masks=None):
|
255 |
+
if isinstance(x, list):
|
256 |
+
return self.forward_features_list(x, masks)
|
257 |
+
|
258 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
259 |
+
|
260 |
+
for blk in self.blocks:
|
261 |
+
x = blk(x)
|
262 |
+
|
263 |
+
x_norm = self.norm(x)
|
264 |
+
return {
|
265 |
+
"x_norm_clstoken": x_norm[:, 0],
|
266 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
267 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
268 |
+
"x_prenorm": x,
|
269 |
+
"masks": masks,
|
270 |
+
}
|
271 |
+
|
272 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
273 |
+
x = self.prepare_tokens_with_masks(x)
|
274 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
275 |
+
output, total_block_len = [], len(self.blocks)
|
276 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
277 |
+
for i, blk in enumerate(self.blocks):
|
278 |
+
x = blk(x)
|
279 |
+
if i in blocks_to_take:
|
280 |
+
output.append(x)
|
281 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
282 |
+
return output
|
283 |
+
|
284 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
285 |
+
x = self.prepare_tokens_with_masks(x)
|
286 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
287 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
288 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
289 |
+
for block_chunk in self.blocks:
|
290 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
291 |
+
x = blk(x)
|
292 |
+
if i in blocks_to_take:
|
293 |
+
output.append(x)
|
294 |
+
i += 1
|
295 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
296 |
+
return output
|
297 |
+
|
298 |
+
def get_intermediate_layers(
|
299 |
+
self,
|
300 |
+
x: torch.Tensor,
|
301 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
302 |
+
reshape: bool = False,
|
303 |
+
return_class_token: bool = False,
|
304 |
+
norm=True,
|
305 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
306 |
+
if self.chunked_blocks:
|
307 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
308 |
+
else:
|
309 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
310 |
+
if norm:
|
311 |
+
outputs = [self.norm(out) for out in outputs]
|
312 |
+
class_tokens = [out[:, 0] for out in outputs]
|
313 |
+
outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs]
|
314 |
+
if reshape:
|
315 |
+
B, _, w, h = x.shape
|
316 |
+
outputs = [
|
317 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
318 |
+
for out in outputs
|
319 |
+
]
|
320 |
+
if return_class_token:
|
321 |
+
return tuple(zip(outputs, class_tokens))
|
322 |
+
return tuple(outputs)
|
323 |
+
|
324 |
+
def forward(self, *args, is_training=False, **kwargs):
|
325 |
+
ret = self.forward_features(*args, **kwargs)
|
326 |
+
if is_training:
|
327 |
+
return ret
|
328 |
+
else:
|
329 |
+
return self.head(ret["x_norm_clstoken"])
|
330 |
+
|
331 |
+
|
332 |
+
def init_weights_vit_timm(module: nn.Module, name: str = ""):
|
333 |
+
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
334 |
+
if isinstance(module, nn.Linear):
|
335 |
+
trunc_normal_(module.weight, std=0.02)
|
336 |
+
if module.bias is not None:
|
337 |
+
nn.init.zeros_(module.bias)
|
338 |
+
|
339 |
+
|
340 |
+
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
|
341 |
+
model = DinoVisionTransformer(
|
342 |
+
patch_size=patch_size,
|
343 |
+
embed_dim=384,
|
344 |
+
depth=12,
|
345 |
+
num_heads=6,
|
346 |
+
mlp_ratio=4,
|
347 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
348 |
+
num_register_tokens=num_register_tokens,
|
349 |
+
**kwargs,
|
350 |
+
)
|
351 |
+
return model
|
352 |
+
|
353 |
+
|
354 |
+
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
|
355 |
+
model = DinoVisionTransformer(
|
356 |
+
patch_size=patch_size,
|
357 |
+
embed_dim=768,
|
358 |
+
depth=12,
|
359 |
+
num_heads=12,
|
360 |
+
mlp_ratio=4,
|
361 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
362 |
+
num_register_tokens=num_register_tokens,
|
363 |
+
**kwargs,
|
364 |
+
)
|
365 |
+
return model
|
366 |
+
|
367 |
+
|
368 |
+
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
|
369 |
+
model = DinoVisionTransformer(
|
370 |
+
patch_size=patch_size,
|
371 |
+
embed_dim=1024,
|
372 |
+
depth=24,
|
373 |
+
num_heads=16,
|
374 |
+
mlp_ratio=4,
|
375 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
376 |
+
num_register_tokens=num_register_tokens,
|
377 |
+
**kwargs,
|
378 |
+
)
|
379 |
+
return model
|
380 |
+
|
381 |
+
|
382 |
+
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
|
383 |
+
"""
|
384 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
385 |
+
"""
|
386 |
+
model = DinoVisionTransformer(
|
387 |
+
patch_size=patch_size,
|
388 |
+
embed_dim=1536,
|
389 |
+
depth=40,
|
390 |
+
num_heads=24,
|
391 |
+
mlp_ratio=4,
|
392 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
393 |
+
num_register_tokens=num_register_tokens,
|
394 |
+
**kwargs,
|
395 |
+
)
|
396 |
+
return model
|