speechbrainteam's picture
Update README.md
b334a65
|
raw
history blame
3.02 kB
metadata
language: en
thumbnail: null
tags:
  - embeddings
  - Speaker
  - Verification
  - Identification
  - pytorch
  - xvectors
  - TDNN
license: apache-2.0
datasets:
  - voxceleb
metrics:
  - EER
  - min\\_dct

Speaker Verification with xvector embeddings on Voxceleb

This repository provides all the necessary tools to extract speaker embeddings with a pretrained TDNN model using SpeechBrain. The system is trained on Voxceleb 1+ Voxceleb2 training data.

For a better experience, we encourage you to learn more about SpeechBrain. The given ASR model performance on Voxceleb1-test set are:

Release EER(%)
05-03-21 3.2

Pipeline description

This system is composed of a TDNN model coupled with statistical pooling. The system is trained with Categorical Cross-Entropy Loss.

Install SpeechBrain

First of all, please install SpeechBrain with the following command:

pip install speechbrain

Please notice that we encourage you to read our tutorials and learn more about SpeechBrain.

Compute your speaker embeddings

import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-xvect-voxceleb", savedir="pretrained_models/spkrec-xvect-voxceleb")
signal, fs =torchaudio.load('samples/audio_samples/example1.wav')
embeddings = classifier.encode_batch(signal)

Inference on GPU

To perform inference on the GPU, add run_opts={"device":"cuda"} when calling the from_hparams method.

Referencing xvectors

  author    = {David Snyder and
               Daniel Garcia{-}Romero and
               Alan McCree and
               Gregory Sell and
               Daniel Povey and
               Sanjeev Khudanpur},
  title     = {Spoken Language Recognition using X-vectors},
  booktitle = {Odyssey 2018},
  pages     = {105--111},
  year      = {2018},
}

Referencing SpeechBrain

@misc{SB2021,
    author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
    title = {SpeechBrain},
    year = {2021},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\url{https://github.com/speechbrain/speechbrain}},
  }

About SpeechBrain

SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain