food-vit-tutorial / README.md
spolivin's picture
Update README.md
c6b175a
|
raw
history blame
2.03 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: food-vit-tutorial
    results:
      - task:
          name: image-classification
          type: image-classification
        dataset:
          name: food101
          type: food101
          config: default
          split: train
          args: default
        metrics:
          - name: accuracy
            type: accuracy
            value: 0.916
datasets:
  - food101

food-vit-tutorial

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0267
  • Accuracy: 0.916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.7889 0.99 62 2.5577 0.838
1.7142 2.0 125 1.6126 0.879
1.2887 2.99 187 1.2513 0.903
1.0307 4.0 250 1.0673 0.922
1.0022 4.96 310 1.0267 0.916

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0