MK_Nemo_12B / README.md
spow12's picture
Update README.md
cc2ae0a verified
|
raw
history blame
3.32 kB
---
library_name: transformers
license: cc-by-nc-4.0
base_model:
- anthracite-org/magnum-v4-12b
- mistralai/Mistral-Nemo-Instruct-2407
- werty1248/Mistral-Nemo-NT-Ko-12B-dpo
tags:
- mergekit
- merge
language:
- ko
- en
---
# spow12/MK_Nemo_12B
### Model Description
<!-- Provide a longer summary of what this model is. -->
This model is a Supervised fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) with DeepSpeed and trl for korean.
Merge methods.
```yaml
models:
- model: anthracite-org/magnum-v4-12b
- model: mistralai/Mistral-Nemo-Instruct-2407
- model: spow12/Mistral-Nemo-Instruct-2407_sft_ver_4.4(private)
- model: werty1248/Mistral-Nemo-NT-Ko-12B-dpo
merge_method: model_stock
base_model: spow12/Mistral-Nemo-Instruct-2407_sft_ver_4.4(private)
dtype: bfloat16
```
### Trained Data
- Trained with public, private data (about 130K)
### Usage
```python
from transformers import TextStreamer, pipeline, AutoTokenizer, AutoModelForCausalLM
model_id = 'spow12/MK_Nemo_12B'
tokenizer = AutoTokenizer.from_pretrained(model_id)
# %%
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2", #Optional
device_map='auto',
)
model.eval()
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map='auto')
generation_configs = dict(
max_new_tokens=2048,
num_return_sequences=1,
temperature=0.75,
# repetition_penalty=1.1,
do_sample=True,
top_k=20,
top_p=0.9,
min_p=0.1,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
streamer = TextStreamer(tokenizer) # Optional, if you want to use streamer, you have to set num_beams=1
)
sys_message = """당신은 μΉœμ ˆν•œ μ±—λ΄‡μœΌλ‘œμ„œ μƒλŒ€λ°©μ˜ μš”μ²­μ— μ΅œλŒ€ν•œ μžμ„Έν•˜κ³  μΉœμ ˆν•˜κ²Œ λ‹΅ν•΄μ•Όν•©λ‹ˆλ‹€.
μ‚¬μš©μžκ°€ μ œκ³΅ν•˜λŠ” 정보λ₯Ό μ„Έμ‹¬ν•˜κ²Œ λΆ„μ„ν•˜μ—¬ μ‚¬μš©μžμ˜ μ˜λ„λ₯Ό μ‹ μ†ν•˜κ²Œ νŒŒμ•…ν•˜κ³  그에 따라 닡변을 μƒμ„±ν•΄μ•Όν•©λ‹ˆλ‹€.
항상 맀우 μžμ—°μŠ€λŸ¬μš΄ ν•œκ΅­μ–΄λ‘œ μ‘λ‹΅ν•˜μ„Έμš”."""
message = [
{
'role': "system",
'content': sys_message
},
{
'role': 'user',
'content': "ν˜„μž¬μ˜ κ²½μ œμƒν™©μ— λŒ€ν•΄ μ–΄λ–»κ²Œ 생각해?."
}
]
conversation = pipe(message, **generation_configs)
conversation[-1]
#output
ν˜„μž¬μ˜ κ²½μ œμƒν™©μ€ κ°κ΅­λ§ˆλ‹€ λ‹€λ₯΄λ©°, μ „λ°˜μ μœΌλ‘œλŠ” μ½”λ‘œλ‚˜19 팬데믹의 영ν–₯으둜 큰 타격을 받은 μƒνƒœμž…λ‹ˆλ‹€. λ§Žμ€ κ΅­κ°€μ—μ„œ 경제 μ„±μž₯λ₯ μ΄ κ°μ†Œν•˜κ³  μ‹€μ—…λ₯ μ΄ μƒμŠΉν–ˆμŠ΅λ‹ˆλ‹€. κ·ΈλŸ¬λ‚˜ 각ꡭ μ •λΆ€λŠ” μž¬μ •κ³Ό 톡화 정책을 톡해 경제λ₯Ό μ§€μ§€ν•˜κ³  λ³΅κ΅¬ν•˜κΈ° μœ„ν•΄ λ…Έλ ₯ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€. μ½”λ‘œλ‚˜19 λ°±μ‹ μ˜ 개발과 배포가 경제 νšŒλ³΅μ— 도움이 될 κ²ƒμœΌλ‘œ κΈ°λŒ€λ˜κ³  μžˆμŠ΅λ‹ˆλ‹€. κ·ΈλŸ¬λ‚˜ μ½”λ‘œλ‚˜19 μ΄μ „μ˜ 경제 μ„±μž₯λ₯ μ„ νšŒλ³΅ν•˜κΈ° μœ„ν•΄μ„œλŠ” μ‹œκ°„μ΄ 걸릴 수 μžˆμŠ΅λ‹ˆλ‹€. μž₯κΈ°μ μœΌλ‘œλŠ” μ €μ„±μž₯κ³Ό κ³ μΈν”Œλ ˆμ΄μ…˜μ΄ 계속될 수 μžˆλŠ” μœ„ν—˜λ„ μžˆμŠ΅λ‹ˆλ‹€. λ”°λΌμ„œ 각ꡭ은 μ½”λ‘œλ‚˜19 μ΄ν›„μ˜ μ„Έκ³„μ—μ„œ μƒˆλ‘œμš΄ 경제 λͺ¨λΈμ„ λͺ¨μƒ‰ν•˜κ³ , 디지털화와 녹색 경제 μ „ν™˜μ„ κ°€μ†ν™”ν•˜λŠ” λ“± λ―Έλž˜μ— λŒ€λΉ„ν•˜λŠ” λ…Έλ ₯이 ν•„μš”ν•©λ‹ˆλ‹€.
```