e5 cogcache small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/e5-small-cogcachedata")
# Run inference
sentences = [
    'How can I improve my Spanish?',
    'How can I improve my English?',
    'How can I lose weight?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.8923
cosine_accuracy_threshold 0.8427
cosine_f1 0.9167
cosine_f1_threshold 0.8427
cosine_precision 0.9167
cosine_recall 0.9167
cosine_ap 0.954
dot_accuracy 0.8923
dot_accuracy_threshold 0.8427
dot_f1 0.9167
dot_f1_threshold 0.8427
dot_precision 0.9167
dot_recall 0.9167
dot_ap 0.954
manhattan_accuracy 0.8846
manhattan_accuracy_threshold 10.0005
manhattan_f1 0.9143
manhattan_f1_threshold 10.0005
manhattan_precision 0.8791
manhattan_recall 0.9524
manhattan_ap 0.9534
euclidean_accuracy 0.8923
euclidean_accuracy_threshold 0.5608
euclidean_f1 0.9167
euclidean_f1_threshold 0.5608
euclidean_precision 0.9167
euclidean_recall 0.9167
euclidean_ap 0.954
max_accuracy 0.8923
max_accuracy_threshold 10.0005
max_f1 0.9167
max_f1_threshold 10.0005
max_precision 0.9167
max_recall 0.9524
max_ap 0.954

Binary Classification

Metric Value
cosine_accuracy 0.8923
cosine_accuracy_threshold 0.8427
cosine_f1 0.9167
cosine_f1_threshold 0.8427
cosine_precision 0.9167
cosine_recall 0.9167
cosine_ap 0.954
dot_accuracy 0.8923
dot_accuracy_threshold 0.8427
dot_f1 0.9167
dot_f1_threshold 0.8427
dot_precision 0.9167
dot_recall 0.9167
dot_ap 0.954
manhattan_accuracy 0.8846
manhattan_accuracy_threshold 10.0005
manhattan_f1 0.9143
manhattan_f1_threshold 10.0005
manhattan_precision 0.8791
manhattan_recall 0.9524
manhattan_ap 0.9534
euclidean_accuracy 0.8923
euclidean_accuracy_threshold 0.5608
euclidean_f1 0.9167
euclidean_f1_threshold 0.5608
euclidean_precision 0.9167
euclidean_recall 0.9167
euclidean_ap 0.954
max_accuracy 0.8923
max_accuracy_threshold 10.0005
max_f1 0.9167
max_f1_threshold 10.0005
max_precision 0.9167
max_recall 0.9524
max_ap 0.954

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,000 training samples
  • Columns: sentence2, sentence1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence2 sentence1 label
    type string string int
    details
    • min: 4 tokens
    • mean: 13.29 tokens
    • max: 55 tokens
    • min: 6 tokens
    • mean: 13.24 tokens
    • max: 66 tokens
    • 0: ~55.10%
    • 1: ~44.90%
  • Samples:
    sentence2 sentence1 label
    What are the ingredients of a pizza What are the ingredients of a pizza? 1
    What are the ingredients of pizza What are the ingredients of a pizza? 1
    What are ingredients of pizza What are the ingredients of a pizza? 1
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 130 evaluation samples
  • Columns: sentence2, sentence1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence2 sentence1 label
    type string string int
    details
    • min: 5 tokens
    • mean: 11.48 tokens
    • max: 22 tokens
    • min: 6 tokens
    • mean: 10.85 tokens
    • max: 20 tokens
    • 0: ~35.38%
    • 1: ~64.62%
  • Samples:
    sentence2 sentence1 label
    What are the ingredients of a pizza What are the ingredients of a pizza? 1
    What are the ingredients of pizza What are the ingredients of a pizza? 1
    What are ingredients of pizza What are the ingredients of a pizza? 1
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 6
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss base_max_ap tuned_max_ap
0 0 - - 0.7430 -
1.0 125 - 0.5464 0.7914 -
2.0 250 - 0.2451 0.9018 -
3.0 375 - 0.1717 0.9460 -
4.0 500 0.24 0.1490 0.9532 -
5.0 625 - 0.1598 0.9523 -
6.0 750 - 0.1382 0.9540 0.9540

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
15
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for srikarvar/e5-small-cogcachedata

Finetuned
(59)
this model

Evaluation results