SentenceTransformer based on srikarvar/fine_tuned_model_5
This is a sentence-transformers model finetuned from srikarvar/fine_tuned_model_5 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: srikarvar/fine_tuned_model_5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_12")
# Run inference
sentences = [
'The `num_services` method gives the quantity of services in the garage.',
'The `num_services` method returns the number of services in the garage.',
'It returns the number of entries in the dataset.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9821 |
cosine_accuracy_threshold | 0.9923 |
cosine_f1 | 0.991 |
cosine_f1_threshold | 0.9923 |
cosine_precision | 1.0 |
cosine_recall | 0.9821 |
cosine_ap | 1.0 |
dot_accuracy | 0.9821 |
dot_accuracy_threshold | 0.9923 |
dot_f1 | 0.991 |
dot_f1_threshold | 0.9923 |
dot_precision | 1.0 |
dot_recall | 0.9821 |
dot_ap | 1.0 |
manhattan_accuracy | 0.9821 |
manhattan_accuracy_threshold | 1.8806 |
manhattan_f1 | 0.991 |
manhattan_f1_threshold | 1.8806 |
manhattan_precision | 1.0 |
manhattan_recall | 0.9821 |
manhattan_ap | 1.0 |
euclidean_accuracy | 0.9821 |
euclidean_accuracy_threshold | 0.1216 |
euclidean_f1 | 0.991 |
euclidean_f1_threshold | 0.1216 |
euclidean_precision | 1.0 |
euclidean_recall | 0.9821 |
euclidean_ap | 1.0 |
max_accuracy | 0.9821 |
max_accuracy_threshold | 1.8806 |
max_f1 | 0.991 |
max_f1_threshold | 1.8806 |
max_precision | 1.0 |
max_recall | 0.9821 |
max_ap | 1.0 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9821 |
cosine_accuracy_threshold | 0.9923 |
cosine_f1 | 0.991 |
cosine_f1_threshold | 0.9923 |
cosine_precision | 1.0 |
cosine_recall | 0.9821 |
cosine_ap | 1.0 |
dot_accuracy | 0.9821 |
dot_accuracy_threshold | 0.9923 |
dot_f1 | 0.991 |
dot_f1_threshold | 0.9923 |
dot_precision | 1.0 |
dot_recall | 0.9821 |
dot_ap | 1.0 |
manhattan_accuracy | 0.9821 |
manhattan_accuracy_threshold | 1.8806 |
manhattan_f1 | 0.991 |
manhattan_f1_threshold | 1.8806 |
manhattan_precision | 1.0 |
manhattan_recall | 0.9821 |
manhattan_ap | 1.0 |
euclidean_accuracy | 0.9821 |
euclidean_accuracy_threshold | 0.1216 |
euclidean_f1 | 0.991 |
euclidean_f1_threshold | 0.1216 |
euclidean_precision | 1.0 |
euclidean_recall | 0.9821 |
euclidean_ap | 1.0 |
max_accuracy | 0.9821 |
max_accuracy_threshold | 1.8806 |
max_f1 | 0.991 |
max_f1_threshold | 1.8806 |
max_precision | 1.0 |
max_recall | 0.9821 |
max_ap | 1.0 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 560 training samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 560 samples:
label sentence2 sentence1 type int string string details - 1: 100.00%
- min: 9 tokens
- mean: 30.18 tokens
- max: 98 tokens
- min: 8 tokens
- mean: 30.0 tokens
- max: 98 tokens
- Samples:
label sentence2 sentence1 1
It is not available in v2.10.0.
No, it doesn't exist in v2.10.0.
1
You can become a member of the research forum and pose questions to the AI community.
You can join and ask questions in the AI research forum.
1
No information regarding initializing a project for PyTorch is included in the guide.
The guide does not provide information on how to initialize a project for PyTorch.
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
json
- Dataset: json
- Size: 560 evaluation samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 560 samples:
label sentence2 sentence1 type int string string details - 1: 100.00%
- min: 15 tokens
- mean: 32.29 tokens
- max: 82 tokens
- min: 14 tokens
- mean: 31.96 tokens
- max: 82 tokens
- Samples:
label sentence2 sentence1 1
The how-to guides for the platform include instructions for Setup, Processing, Streaming, TensorFlow integration, PyTorch integration, Caching, Cloud storage, Indexing, Analytics, and Data Pipelines.
The how-to guides for the platform include Setup, Processing, Streaming, TensorFlow integration, PyTorch integration, Cache management, Cloud storage, Search index, Analytics, and Data Pipelines.
1
In the absence of a model script, all files in the supported formats will be loaded. However, if a model script is present, it will be downloaded and executed in order to download and prepare the model.
If there’s no model script, all the files in the supported formats are loaded. If there’s a model script, it is downloaded and executed to download and prepare the model.
1
React, Angular, and Vue are compatible with the Plugin library.
The Plugin library can be used with React, Angular, and Vue.
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2num_train_epochs
: 4warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 1.0 | - |
1.0 | 8 | - | 0.0028 | 1.0 | - |
1.25 | 10 | 0.1425 | - | - | - |
2.0 | 16 | - | 0.0003 | 1.0 | - |
2.5 | 20 | 0.002 | - | - | - |
3.0 | 24 | - | 0.0001 | 1.0 | - |
3.75 | 30 | 0.0008 | - | - | - |
4.0 | 32 | - | 0.0001 | 1.0 | 1.0 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for srikarvar/fine_tuned_model_12
Base model
intfloat/multilingual-e5-small
Finetuned
srikarvar/fine_tuned_model_5
Evaluation results
- Cosine Accuracy on pair class devself-reported0.982
- Cosine Accuracy Threshold on pair class devself-reported0.992
- Cosine F1 on pair class devself-reported0.991
- Cosine F1 Threshold on pair class devself-reported0.992
- Cosine Precision on pair class devself-reported1.000
- Cosine Recall on pair class devself-reported0.982
- Cosine Ap on pair class devself-reported1.000
- Dot Accuracy on pair class devself-reported0.982
- Dot Accuracy Threshold on pair class devself-reported0.992
- Dot F1 on pair class devself-reported0.991