srikarvar's picture
Add new SentenceTransformer model.
3ba5aa4 verified
|
raw
history blame
28.6 kB
metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:971
  - loss:OnlineContrastiveLoss
widget:
  - source_sentence: Steps to bake a pie
    sentences:
      - How to bake a pie?
      - What are the ingredients of a pizza?
      - How to create a business plan?
  - source_sentence: What are the benefits of yoga?
    sentences:
      - If I combine the yellow and blue colors, what color will I get?
      - Can you help me understand this contract?
      - What are the benefits of meditation?
  - source_sentence: Capital city of Canada
    sentences:
      - What time does the movie start?
      - Who is the President of the United States?
      - What is the capital of Canada?
  - source_sentence: Tell me about Shopify
    sentences:
      - Who discovered penicillin?
      - Share info about Shopify
      - Who invented the telephone?
  - source_sentence: What is the melting point of ice at sea level?
    sentences:
      - What is the boiling point of water at sea level?
      - Can you recommend a good restaurant nearby?
      - Tell me a joke
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-small
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class dev
          type: pair-class-dev
        metrics:
          - type: cosine_accuracy
            value: 0.9300411522633745
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.788658857345581
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9237668161434978
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7819762825965881
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.8956521739130435
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9537037037037037
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9603135110633257
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9300411522633745
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.788658857345581
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9237668161434978
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.7819762229919434
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.8956521739130435
            name: Dot Precision
          - type: dot_recall
            value: 0.9537037037037037
            name: Dot Recall
          - type: dot_ap
            value: 0.9603135110633257
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.9218106995884774
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 9.936657905578613
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.914798206278027
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 10.316186904907227
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.8869565217391304
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9444444444444444
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9578931449470002
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9300411522633745
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.6501401662826538
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9237668161434978
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.6603381633758545
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.8956521739130435
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9537037037037037
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9603135110633257
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9300411522633745
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 9.936657905578613
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9237668161434978
            name: Max F1
          - type: max_f1_threshold
            value: 10.316186904907227
            name: Max F1 Threshold
          - type: max_precision
            value: 0.8956521739130435
            name: Max Precision
          - type: max_recall
            value: 0.9537037037037037
            name: Max Recall
          - type: max_ap
            value: 0.9603135110633257
            name: Max Ap
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class test
          type: pair-class-test
        metrics:
          - type: cosine_accuracy
            value: 0.9300411522633745
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.788658857345581
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9237668161434978
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7819762825965881
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.8956521739130435
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9537037037037037
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9603135110633257
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9300411522633745
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.788658857345581
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9237668161434978
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.7819762229919434
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.8956521739130435
            name: Dot Precision
          - type: dot_recall
            value: 0.9537037037037037
            name: Dot Recall
          - type: dot_ap
            value: 0.9603135110633257
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.9218106995884774
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 9.936657905578613
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.914798206278027
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 10.316186904907227
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.8869565217391304
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9444444444444444
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9578931449470002
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9300411522633745
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.6501401662826538
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9237668161434978
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.6603381633758545
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.8956521739130435
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9537037037037037
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9603135110633257
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9300411522633745
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 9.936657905578613
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9237668161434978
            name: Max F1
          - type: max_f1_threshold
            value: 10.316186904907227
            name: Max F1 Threshold
          - type: max_precision
            value: 0.8956521739130435
            name: Max Precision
          - type: max_recall
            value: 0.9537037037037037
            name: Max Recall
          - type: max_ap
            value: 0.9603135110633257
            name: Max Ap

SentenceTransformer based on intfloat/multilingual-e5-small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-4")
# Run inference
sentences = [
    'What is the melting point of ice at sea level?',
    'What is the boiling point of water at sea level?',
    'Can you recommend a good restaurant nearby?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.93
cosine_accuracy_threshold 0.7887
cosine_f1 0.9238
cosine_f1_threshold 0.782
cosine_precision 0.8957
cosine_recall 0.9537
cosine_ap 0.9603
dot_accuracy 0.93
dot_accuracy_threshold 0.7887
dot_f1 0.9238
dot_f1_threshold 0.782
dot_precision 0.8957
dot_recall 0.9537
dot_ap 0.9603
manhattan_accuracy 0.9218
manhattan_accuracy_threshold 9.9367
manhattan_f1 0.9148
manhattan_f1_threshold 10.3162
manhattan_precision 0.887
manhattan_recall 0.9444
manhattan_ap 0.9579
euclidean_accuracy 0.93
euclidean_accuracy_threshold 0.6501
euclidean_f1 0.9238
euclidean_f1_threshold 0.6603
euclidean_precision 0.8957
euclidean_recall 0.9537
euclidean_ap 0.9603
max_accuracy 0.93
max_accuracy_threshold 9.9367
max_f1 0.9238
max_f1_threshold 10.3162
max_precision 0.8957
max_recall 0.9537
max_ap 0.9603

Binary Classification

Metric Value
cosine_accuracy 0.93
cosine_accuracy_threshold 0.7887
cosine_f1 0.9238
cosine_f1_threshold 0.782
cosine_precision 0.8957
cosine_recall 0.9537
cosine_ap 0.9603
dot_accuracy 0.93
dot_accuracy_threshold 0.7887
dot_f1 0.9238
dot_f1_threshold 0.782
dot_precision 0.8957
dot_recall 0.9537
dot_ap 0.9603
manhattan_accuracy 0.9218
manhattan_accuracy_threshold 9.9367
manhattan_f1 0.9148
manhattan_f1_threshold 10.3162
manhattan_precision 0.887
manhattan_recall 0.9444
manhattan_ap 0.9579
euclidean_accuracy 0.93
euclidean_accuracy_threshold 0.6501
euclidean_f1 0.9238
euclidean_f1_threshold 0.6603
euclidean_precision 0.8957
euclidean_recall 0.9537
euclidean_ap 0.9603
max_accuracy 0.93
max_accuracy_threshold 9.9367
max_f1 0.9238
max_f1_threshold 10.3162
max_precision 0.8957
max_recall 0.9537
max_ap 0.9603

Training Details

Training Dataset

Unnamed Dataset

  • Size: 971 training samples
  • Columns: sentence2, sentence1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence2 sentence1 label
    type string string int
    details
    • min: 4 tokens
    • mean: 10.12 tokens
    • max: 22 tokens
    • min: 6 tokens
    • mean: 10.82 tokens
    • max: 22 tokens
    • 0: ~48.61%
    • 1: ~51.39%
  • Samples:
    sentence2 sentence1 label
    Total number of bones in an adult human body How many bones are in the human body? 1
    What is the largest river in North America? What is the largest lake in North America? 0
    What is the capital of Australia? What is the capital of New Zealand? 0
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 243 evaluation samples
  • Columns: sentence2, sentence1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence2 sentence1 label
    type string string int
    details
    • min: 4 tokens
    • mean: 10.09 tokens
    • max: 20 tokens
    • min: 6 tokens
    • mean: 10.55 tokens
    • max: 22 tokens
    • 0: ~55.56%
    • 1: ~44.44%
  • Samples:
    sentence2 sentence1 label
    What are the various forms of renewable energy? What are the different types of renewable energy? 1
    Gravity discoverer Who discovered gravity? 1
    Can you help me write this report? Can you help me understand this report? 0
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 2
  • learning_rate: 3e-06
  • weight_decay: 0.01
  • num_train_epochs: 15
  • lr_scheduler_type: reduce_lr_on_plateau
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • optim: adamw_torch_fused

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • learning_rate: 3e-06
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 15
  • max_steps: -1
  • lr_scheduler_type: reduce_lr_on_plateau
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss pair-class-dev_max_ap pair-class-test_max_ap
0 0 - - 0.6426 -
0.6452 10 4.7075 - - -
0.9677 15 - 3.1481 0.7843 -
1.2903 20 3.431 - - -
1.9355 30 3.4054 - - -
2.0 31 - 2.1820 0.8692 -
2.5806 40 2.2735 - - -
2.9677 46 - 1.8185 0.9078 -
3.2258 50 2.3159 - - -
3.8710 60 2.1466 - - -
4.0 62 - 1.5769 0.9252 -
4.5161 70 1.6873 - - -
4.9677 77 - 1.4342 0.9310 -
5.1613 80 1.5927 - - -
5.8065 90 1.4184 - - -
6.0 93 - 1.3544 0.9357 -
6.4516 100 1.333 - - -
6.9677 108 - 1.2630 0.9402 -
7.0968 110 1.089 - - -
7.7419 120 1.0947 - - -
8.0 124 - 1.2120 0.9444 -
8.3871 130 0.8118 - - -
8.9677 139 - 1.1641 0.9454 -
9.0323 140 1.0237 - - -
9.6774 150 0.8406 - - -
10.0 155 - 1.0481 0.9464 -
10.3226 160 0.7081 - - -
10.9677 170 0.7397 0.9324 0.9509 -
11.6129 180 0.5604 - - -
12.0 186 - 0.8386 0.9556 -
12.2581 190 0.5841 - - -
12.9032 200 0.5463 - - -
12.9677 201 - 0.7930 0.9577 -
13.5484 210 0.4599 - - -
14.0 217 - 0.7564 0.9599 -
14.1935 220 0.2437 - - -
14.5161 225 - 0.7522 0.9603 0.9603
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}