srikarvar's picture
Add new SentenceTransformer model.
3ba5aa4 verified
---
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:971
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Steps to bake a pie
sentences:
- How to bake a pie?
- What are the ingredients of a pizza?
- How to create a business plan?
- source_sentence: What are the benefits of yoga?
sentences:
- If I combine the yellow and blue colors, what color will I get?
- Can you help me understand this contract?
- What are the benefits of meditation?
- source_sentence: Capital city of Canada
sentences:
- What time does the movie start?
- Who is the President of the United States?
- What is the capital of Canada?
- source_sentence: Tell me about Shopify
sentences:
- Who discovered penicillin?
- Share info about Shopify
- Who invented the telephone?
- source_sentence: What is the melting point of ice at sea level?
sentences:
- What is the boiling point of water at sea level?
- Can you recommend a good restaurant nearby?
- Tell me a joke
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9300411522633745
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.788658857345581
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9237668161434978
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7819762825965881
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8956521739130435
name: Cosine Precision
- type: cosine_recall
value: 0.9537037037037037
name: Cosine Recall
- type: cosine_ap
value: 0.9603135110633257
name: Cosine Ap
- type: dot_accuracy
value: 0.9300411522633745
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.788658857345581
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9237668161434978
name: Dot F1
- type: dot_f1_threshold
value: 0.7819762229919434
name: Dot F1 Threshold
- type: dot_precision
value: 0.8956521739130435
name: Dot Precision
- type: dot_recall
value: 0.9537037037037037
name: Dot Recall
- type: dot_ap
value: 0.9603135110633257
name: Dot Ap
- type: manhattan_accuracy
value: 0.9218106995884774
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.936657905578613
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.914798206278027
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.316186904907227
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8869565217391304
name: Manhattan Precision
- type: manhattan_recall
value: 0.9444444444444444
name: Manhattan Recall
- type: manhattan_ap
value: 0.9578931449470002
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9300411522633745
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6501401662826538
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9237668161434978
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6603381633758545
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8956521739130435
name: Euclidean Precision
- type: euclidean_recall
value: 0.9537037037037037
name: Euclidean Recall
- type: euclidean_ap
value: 0.9603135110633257
name: Euclidean Ap
- type: max_accuracy
value: 0.9300411522633745
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.936657905578613
name: Max Accuracy Threshold
- type: max_f1
value: 0.9237668161434978
name: Max F1
- type: max_f1_threshold
value: 10.316186904907227
name: Max F1 Threshold
- type: max_precision
value: 0.8956521739130435
name: Max Precision
- type: max_recall
value: 0.9537037037037037
name: Max Recall
- type: max_ap
value: 0.9603135110633257
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9300411522633745
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.788658857345581
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9237668161434978
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7819762825965881
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8956521739130435
name: Cosine Precision
- type: cosine_recall
value: 0.9537037037037037
name: Cosine Recall
- type: cosine_ap
value: 0.9603135110633257
name: Cosine Ap
- type: dot_accuracy
value: 0.9300411522633745
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.788658857345581
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9237668161434978
name: Dot F1
- type: dot_f1_threshold
value: 0.7819762229919434
name: Dot F1 Threshold
- type: dot_precision
value: 0.8956521739130435
name: Dot Precision
- type: dot_recall
value: 0.9537037037037037
name: Dot Recall
- type: dot_ap
value: 0.9603135110633257
name: Dot Ap
- type: manhattan_accuracy
value: 0.9218106995884774
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.936657905578613
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.914798206278027
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.316186904907227
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8869565217391304
name: Manhattan Precision
- type: manhattan_recall
value: 0.9444444444444444
name: Manhattan Recall
- type: manhattan_ap
value: 0.9578931449470002
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9300411522633745
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6501401662826538
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9237668161434978
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6603381633758545
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8956521739130435
name: Euclidean Precision
- type: euclidean_recall
value: 0.9537037037037037
name: Euclidean Recall
- type: euclidean_ap
value: 0.9603135110633257
name: Euclidean Ap
- type: max_accuracy
value: 0.9300411522633745
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.936657905578613
name: Max Accuracy Threshold
- type: max_f1
value: 0.9237668161434978
name: Max F1
- type: max_f1_threshold
value: 10.316186904907227
name: Max F1 Threshold
- type: max_precision
value: 0.8956521739130435
name: Max Precision
- type: max_recall
value: 0.9537037037037037
name: Max Recall
- type: max_ap
value: 0.9603135110633257
name: Max Ap
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-4")
# Run inference
sentences = [
'What is the melting point of ice at sea level?',
'What is the boiling point of water at sea level?',
'Can you recommend a good restaurant nearby?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.93 |
| cosine_accuracy_threshold | 0.7887 |
| cosine_f1 | 0.9238 |
| cosine_f1_threshold | 0.782 |
| cosine_precision | 0.8957 |
| cosine_recall | 0.9537 |
| cosine_ap | 0.9603 |
| dot_accuracy | 0.93 |
| dot_accuracy_threshold | 0.7887 |
| dot_f1 | 0.9238 |
| dot_f1_threshold | 0.782 |
| dot_precision | 0.8957 |
| dot_recall | 0.9537 |
| dot_ap | 0.9603 |
| manhattan_accuracy | 0.9218 |
| manhattan_accuracy_threshold | 9.9367 |
| manhattan_f1 | 0.9148 |
| manhattan_f1_threshold | 10.3162 |
| manhattan_precision | 0.887 |
| manhattan_recall | 0.9444 |
| manhattan_ap | 0.9579 |
| euclidean_accuracy | 0.93 |
| euclidean_accuracy_threshold | 0.6501 |
| euclidean_f1 | 0.9238 |
| euclidean_f1_threshold | 0.6603 |
| euclidean_precision | 0.8957 |
| euclidean_recall | 0.9537 |
| euclidean_ap | 0.9603 |
| max_accuracy | 0.93 |
| max_accuracy_threshold | 9.9367 |
| max_f1 | 0.9238 |
| max_f1_threshold | 10.3162 |
| max_precision | 0.8957 |
| max_recall | 0.9537 |
| **max_ap** | **0.9603** |
#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.93 |
| cosine_accuracy_threshold | 0.7887 |
| cosine_f1 | 0.9238 |
| cosine_f1_threshold | 0.782 |
| cosine_precision | 0.8957 |
| cosine_recall | 0.9537 |
| cosine_ap | 0.9603 |
| dot_accuracy | 0.93 |
| dot_accuracy_threshold | 0.7887 |
| dot_f1 | 0.9238 |
| dot_f1_threshold | 0.782 |
| dot_precision | 0.8957 |
| dot_recall | 0.9537 |
| dot_ap | 0.9603 |
| manhattan_accuracy | 0.9218 |
| manhattan_accuracy_threshold | 9.9367 |
| manhattan_f1 | 0.9148 |
| manhattan_f1_threshold | 10.3162 |
| manhattan_precision | 0.887 |
| manhattan_recall | 0.9444 |
| manhattan_ap | 0.9579 |
| euclidean_accuracy | 0.93 |
| euclidean_accuracy_threshold | 0.6501 |
| euclidean_f1 | 0.9238 |
| euclidean_f1_threshold | 0.6603 |
| euclidean_precision | 0.8957 |
| euclidean_recall | 0.9537 |
| euclidean_ap | 0.9603 |
| max_accuracy | 0.93 |
| max_accuracy_threshold | 9.9367 |
| max_f1 | 0.9238 |
| max_f1_threshold | 10.3162 |
| max_precision | 0.8957 |
| max_recall | 0.9537 |
| **max_ap** | **0.9603** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 971 training samples
* Columns: <code>sentence2</code>, <code>sentence1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | sentence1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 4 tokens</li><li>mean: 10.12 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.82 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~48.61%</li><li>1: ~51.39%</li></ul> |
* Samples:
| sentence2 | sentence1 | label |
|:----------------------------------------------------------|:--------------------------------------------------------|:---------------|
| <code>Total number of bones in an adult human body</code> | <code>How many bones are in the human body?</code> | <code>1</code> |
| <code>What is the largest river in North America?</code> | <code>What is the largest lake in North America?</code> | <code>0</code> |
| <code>What is the capital of Australia?</code> | <code>What is the capital of New Zealand?</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 243 evaluation samples
* Columns: <code>sentence2</code>, <code>sentence1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | sentence1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 4 tokens</li><li>mean: 10.09 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.55 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~55.56%</li><li>1: ~44.44%</li></ul> |
* Samples:
| sentence2 | sentence1 | label |
|:-------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
| <code>What are the various forms of renewable energy?</code> | <code>What are the different types of renewable energy?</code> | <code>1</code> |
| <code>Gravity discoverer</code> | <code>Who discovered gravity?</code> | <code>1</code> |
| <code>Can you help me write this report?</code> | <code>Can you help me understand this report?</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `learning_rate`: 3e-06
- `weight_decay`: 0.01
- `num_train_epochs`: 15
- `lr_scheduler_type`: reduce_lr_on_plateau
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 15
- `max_steps`: -1
- `lr_scheduler_type`: reduce_lr_on_plateau
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
|:-----------:|:-------:|:-------------:|:----------:|:---------------------:|:----------------------:|
| 0 | 0 | - | - | 0.6426 | - |
| 0.6452 | 10 | 4.7075 | - | - | - |
| 0.9677 | 15 | - | 3.1481 | 0.7843 | - |
| 1.2903 | 20 | 3.431 | - | - | - |
| 1.9355 | 30 | 3.4054 | - | - | - |
| 2.0 | 31 | - | 2.1820 | 0.8692 | - |
| 2.5806 | 40 | 2.2735 | - | - | - |
| 2.9677 | 46 | - | 1.8185 | 0.9078 | - |
| 3.2258 | 50 | 2.3159 | - | - | - |
| 3.8710 | 60 | 2.1466 | - | - | - |
| 4.0 | 62 | - | 1.5769 | 0.9252 | - |
| 4.5161 | 70 | 1.6873 | - | - | - |
| 4.9677 | 77 | - | 1.4342 | 0.9310 | - |
| 5.1613 | 80 | 1.5927 | - | - | - |
| 5.8065 | 90 | 1.4184 | - | - | - |
| 6.0 | 93 | - | 1.3544 | 0.9357 | - |
| 6.4516 | 100 | 1.333 | - | - | - |
| 6.9677 | 108 | - | 1.2630 | 0.9402 | - |
| 7.0968 | 110 | 1.089 | - | - | - |
| 7.7419 | 120 | 1.0947 | - | - | - |
| 8.0 | 124 | - | 1.2120 | 0.9444 | - |
| 8.3871 | 130 | 0.8118 | - | - | - |
| 8.9677 | 139 | - | 1.1641 | 0.9454 | - |
| 9.0323 | 140 | 1.0237 | - | - | - |
| 9.6774 | 150 | 0.8406 | - | - | - |
| 10.0 | 155 | - | 1.0481 | 0.9464 | - |
| 10.3226 | 160 | 0.7081 | - | - | - |
| 10.9677 | 170 | 0.7397 | 0.9324 | 0.9509 | - |
| 11.6129 | 180 | 0.5604 | - | - | - |
| 12.0 | 186 | - | 0.8386 | 0.9556 | - |
| 12.2581 | 190 | 0.5841 | - | - | - |
| 12.9032 | 200 | 0.5463 | - | - | - |
| 12.9677 | 201 | - | 0.7930 | 0.9577 | - |
| 13.5484 | 210 | 0.4599 | - | - | - |
| 14.0 | 217 | - | 0.7564 | 0.9599 | - |
| 14.1935 | 220 | 0.2437 | - | - | - |
| **14.5161** | **225** | **-** | **0.7522** | **0.9603** | **0.9603** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->