segformer-b3-fashion-finetuned-polo-segments-v1.4

This model is a fine-tuned version of sayeed99/segformer-b3-fashion on the sshk/polo-badges-segmentation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0547
  • Mean Iou: 0.7482
  • Mean Accuracy: 0.9206
  • Overall Accuracy: 0.9823
  • Accuracy Unlabeled: nan
  • Accuracy Collar: 0.8807
  • Accuracy Polo: 0.9847
  • Accuracy Lines-cuff: 0.7598
  • Accuracy Lines-chest: 0.9230
  • Accuracy Human: 0.9823
  • Accuracy Background: 0.9929
  • Accuracy Tape: nan
  • Iou Unlabeled: nan
  • Iou Collar: 0.8276
  • Iou Polo: 0.9580
  • Iou Lines-cuff: 0.6735
  • Iou Lines-chest: 0.8230
  • Iou Human: 0.9680
  • Iou Background: 0.9872
  • Iou Tape: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Collar Accuracy Polo Accuracy Lines-cuff Accuracy Lines-chest Accuracy Human Accuracy Background Accuracy Tape Iou Unlabeled Iou Collar Iou Polo Iou Lines-cuff Iou Lines-chest Iou Human Iou Background Iou Tape
0.206 2.5 20 0.1808 0.5772 0.6083 0.9552 nan 0.6933 0.9875 0.0 0.0304 0.9818 0.9566 nan nan 0.6406 0.9100 0.0 0.0276 0.9299 0.9553 nan
0.0873 5.0 40 0.0882 0.7806 0.8207 0.9768 nan 0.8457 0.9848 0.2359 0.8896 0.9780 0.9904 nan nan 0.7808 0.9460 0.2351 0.7783 0.9605 0.9827 nan
0.0648 7.5 60 0.0712 0.8502 0.8900 0.9794 nan 0.8586 0.9880 0.6659 0.8584 0.9796 0.9892 nan nan 0.8059 0.9499 0.6054 0.7918 0.9642 0.9842 nan
0.0607 10.0 80 0.0631 0.8556 0.8957 0.9806 nan 0.8586 0.9856 0.7087 0.8477 0.9829 0.9907 nan nan 0.8055 0.9539 0.6394 0.7834 0.9659 0.9856 nan
0.057 12.5 100 0.0605 0.8661 0.9135 0.9815 nan 0.8708 0.9818 0.7296 0.9224 0.9855 0.9908 nan nan 0.8148 0.9570 0.6577 0.8144 0.9669 0.9859 nan
0.0458 15.0 120 0.0573 0.7446 0.9169 0.9819 nan 0.8925 0.9838 0.7505 0.9009 0.9792 0.9949 nan nan 0.8244 0.9581 0.6600 0.8164 0.9669 0.9863 0.0
0.0413 17.5 140 0.0587 0.7428 0.9196 0.9818 nan 0.8818 0.9820 0.7483 0.9299 0.9823 0.9932 nan nan 0.8217 0.9571 0.6671 0.7997 0.9673 0.9869 0.0
0.0449 20.0 160 0.0542 0.7468 0.9202 0.9826 nan 0.8850 0.9833 0.7516 0.9248 0.9842 0.9925 nan nan 0.8270 0.9590 0.6678 0.8179 0.9688 0.9873 0.0
0.0394 22.5 180 0.0558 0.7468 0.9208 0.9819 nan 0.8934 0.9853 0.7528 0.9207 0.9808 0.9919 nan nan 0.8298 0.9564 0.6657 0.8214 0.9672 0.9869 0.0
0.0472 25.0 200 0.0549 0.7474 0.9185 0.9823 nan 0.8792 0.9854 0.7531 0.9186 0.9828 0.9922 nan nan 0.8274 0.9577 0.6681 0.8233 0.9681 0.9871 0.0
0.0452 27.5 220 0.0547 0.7482 0.9217 0.9823 nan 0.8837 0.9846 0.7622 0.9247 0.9823 0.9927 nan nan 0.8287 0.9580 0.6733 0.8221 0.9681 0.9871 0.0
0.0392 30.0 240 0.0547 0.7482 0.9206 0.9823 nan 0.8807 0.9847 0.7598 0.9230 0.9823 0.9929 nan nan 0.8276 0.9580 0.6735 0.8230 0.9680 0.9872 0.0

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
47.2M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for sshk/segformer-b3-fashion-finetuned-polo-segments-v1.4

Finetuned
(4)
this model