ssiyer's picture
Training complete
cb2aad1 verified
metadata
license: apache-2.0
base_model: google/mt5-small
tags:
  - summarization
  - generated_from_trainer
datasets:
  - xsum
metrics:
  - rouge
model-index:
  - name: mt5-small-finetuned-amazon-en-es
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xsum
          type: xsum
          config: default
          split: validation
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.0899

mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of google/mt5-small on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6525
  • Rouge1: 0.0899
  • Rouge2: 0.0226
  • Rougel: 0.0821
  • Rougelsum: 0.0807

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
18.5949 1.0 50 8.8110 0.0298 0.0 0.0298 0.0298
10.7742 2.0 100 5.1285 0.087 0.0087 0.0805 0.0796
7.6938 3.0 150 4.3645 0.0684 0.0 0.0579 0.0615
6.3393 4.0 200 4.0164 0.035 0.0 0.0355 0.035
5.9075 5.0 250 3.7881 0.0579 0.0065 0.051 0.0528
5.7394 6.0 300 3.6971 0.0749 0.0226 0.0733 0.0733
5.4246 7.0 350 3.6652 0.0749 0.0226 0.0733 0.0733
5.2963 8.0 400 3.6525 0.0899 0.0226 0.0821 0.0807

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.1
  • Tokenizers 0.15.2