File size: 6,528 Bytes
6409fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471f149
 
 
6409fe5
 
 
 
 
fd8e2d7
 
 
 
 
6409fe5
eef70e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719782c
 
 
 
 
 
 
 
 
 
 
 
020ae17
 
 
 
 
 
 
 
 
 
 
 
 
7beb3b0
 
 
fd8e2d7
020ae17
 
961aa3f
 
 
 
 
 
020ae17
 
 
eef70e6
6409fe5
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
license: other
language:
- en
tags:
- causal-lm
- code
metrics:
- code_eval
library_name: transformers
model-index:
- name: stabilityai/stable-code-instruct-3b
  results:
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.4
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (C++)
    metrics:
    - name: pass@1
      type: pass@1
      value: 30.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (PHP)
    metrics:
    - name: pass@1
      type: pass@1
      value: 24.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Rust)
    metrics:
    - name: pass@1
      type: pass@1
      value: 23.0
      verified: false
---
# `stable-code-instruct-3b`

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63466107f7bd6326925fc770/uo941OdFjQPsnylIVIIV7.png)


## Model Description

`stable-code-instruct-3b` is a 2.7B billion parameter decoder-only language model tuned from [`stable-code-3b`](https://huggingface.co/stabilityai/stable-code-3b/). This model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). 

This instruct tune demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main), and on the code portions of
[MT Bench](https://klu.ai/glossary/mt-bench-eval).
The model is finetuned to make it useable in tasks like,
  - General purpose Code/Software Engineering like conversations.
  - Function Calling
  - SQL related generation and conversation.


## Usage
Here's how you can run the model use the model:

```python

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.eval()
model = model.cuda()

messages = [
    {
        "role": "system",
        "content": "You are a helpful and polite assistant",
    },
    {
        "role": "user",
        "content": "Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes."
    },
]

prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

tokens = model.generate(
    **inputs,
    max_new_tokens=1024,
    temperature=0.5,
    top_p=0.95,
    top_k=100,
    do_sample=True,
    use_cache=True
)

output = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=False)[0]
```

## Model Details

* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `Stable Code Instruct 3B` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: English
* **Paper**: [Stable Code Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: [https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b)
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stable-code-instruct-3b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
* **Contact**: For questions and comments about the model, please email `[email protected]`


## Performance
### Multi-PL Benchmark:
| Model                        | Size | Avg  | Python | C++  | JavaScript | Java | PHP  | Rust |
|------------------------------|------|------|--------|------|------------|------|------|------|
| Codellama Instruct           | 7B   | 0.30 | 0.33   | 0.31 | 0.31       | 0.29 | 0.31 | 0.25 |
| Deepseek Instruct            | 1.3B | 0.44 | 0.52   | **0.52** | 0.41       | **0.46** | 0.45 | 0.28 |
| Stable Code Instruct (SFT)   | 3B   | 0.44 | 0.55   | 0.45 | 0.42       | 0.42 | 0.44 | 0.32 |
| Stable Code Instruct (DPO)   | 3B   | **0.47** | **0.59**   | 0.49 | **0.49**       | 0.44 | **0.45** | **0.37** |

### MT-Bench Coding:
| Model                       | Size | Score |
|-----------------------------|------|-----------------|
| DeepSeek Coder              | 1.3B | 4.6             |
| Stable Code Instruct (DPO)  | 3B   | **5.8**(ours)             |
| Stable Code Instruct (SFT)  | 3B   | 5.5             |
| DeepSeek Coder              | 6.7B | **6.9**             |
| CodeLlama Instruct          | 7B   | 3.55            |
| StarChat2                   | 15B  | 5.7             |

### SQL Performance
| Model                       | Size | Date  | Group By | Order By | Ratio | Join  | Where |
|-----------------------------|------|-------|----------|----------|-------|-------|-------|
| Stable Code Instruct (DPO)  | 3B   | 24.0% | 54.2%    | 68.5%    | 40.0% | 54.2% | 42.8% |
| DeepSeek-Coder Instruct     | 1.3B | 24.0% | 37.1%    | 51.4%    | 34.3% | 45.7% | 45.7% |
| SQLCoder                    | 7B   | 64.0% | 82.9%    | 74.3%    | 54.3% | 74.3% | 74.3% |




## How to Cite

```bibtex
@misc{stable-code-instruct-3b,
      url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-instruct-3b)},
      title={Stable Code 3B},
      author={Phung, Duy, and Pinnaparaju, Nikhil and Adithyan, Reshinth and Tow, Jonathan and Cooper, Nathan}
}
```