File size: 6,528 Bytes
6409fe5 471f149 6409fe5 fd8e2d7 6409fe5 eef70e6 719782c 020ae17 7beb3b0 fd8e2d7 020ae17 961aa3f 020ae17 eef70e6 6409fe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
license: other
language:
- en
tags:
- causal-lm
- code
metrics:
- code_eval
library_name: transformers
model-index:
- name: stabilityai/stable-code-instruct-3b
results:
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Python)
metrics:
- name: pass@1
type: pass@1
value: 32.4
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (C++)
metrics:
- name: pass@1
type: pass@1
value: 30.9
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Java)
metrics:
- name: pass@1
type: pass@1
value: 32.1
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 32.1
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (PHP)
metrics:
- name: pass@1
type: pass@1
value: 24.2
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL-HumanEval (Rust)
metrics:
- name: pass@1
type: pass@1
value: 23.0
verified: false
---
# `stable-code-instruct-3b`
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63466107f7bd6326925fc770/uo941OdFjQPsnylIVIIV7.png)
## Model Description
`stable-code-instruct-3b` is a 2.7B billion parameter decoder-only language model tuned from [`stable-code-3b`](https://huggingface.co/stabilityai/stable-code-3b/). This model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
This instruct tune demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using [BigCode's Evaluation Harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main), and on the code portions of
[MT Bench](https://klu.ai/glossary/mt-bench-eval).
The model is finetuned to make it useable in tasks like,
- General purpose Code/Software Engineering like conversations.
- Function Calling
- SQL related generation and conversation.
## Usage
Here's how you can run the model use the model:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.eval()
model = model.cuda()
messages = [
{
"role": "system",
"content": "You are a helpful and polite assistant",
},
{
"role": "user",
"content": "Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes."
},
]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
tokens = model.generate(
**inputs,
max_new_tokens=1024,
temperature=0.5,
top_p=0.95,
top_k=100,
do_sample=True,
use_cache=True
)
output = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=False)[0]
```
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `Stable Code Instruct 3B` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: English
* **Paper**: [Stable Code Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: [https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b)
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stable-code-instruct-3b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
* **Contact**: For questions and comments about the model, please email `[email protected]`
## Performance
### Multi-PL Benchmark:
| Model | Size | Avg | Python | C++ | JavaScript | Java | PHP | Rust |
|------------------------------|------|------|--------|------|------------|------|------|------|
| Codellama Instruct | 7B | 0.30 | 0.33 | 0.31 | 0.31 | 0.29 | 0.31 | 0.25 |
| Deepseek Instruct | 1.3B | 0.44 | 0.52 | **0.52** | 0.41 | **0.46** | 0.45 | 0.28 |
| Stable Code Instruct (SFT) | 3B | 0.44 | 0.55 | 0.45 | 0.42 | 0.42 | 0.44 | 0.32 |
| Stable Code Instruct (DPO) | 3B | **0.47** | **0.59** | 0.49 | **0.49** | 0.44 | **0.45** | **0.37** |
### MT-Bench Coding:
| Model | Size | Score |
|-----------------------------|------|-----------------|
| DeepSeek Coder | 1.3B | 4.6 |
| Stable Code Instruct (DPO) | 3B | **5.8**(ours) |
| Stable Code Instruct (SFT) | 3B | 5.5 |
| DeepSeek Coder | 6.7B | **6.9** |
| CodeLlama Instruct | 7B | 3.55 |
| StarChat2 | 15B | 5.7 |
### SQL Performance
| Model | Size | Date | Group By | Order By | Ratio | Join | Where |
|-----------------------------|------|-------|----------|----------|-------|-------|-------|
| Stable Code Instruct (DPO) | 3B | 24.0% | 54.2% | 68.5% | 40.0% | 54.2% | 42.8% |
| DeepSeek-Coder Instruct | 1.3B | 24.0% | 37.1% | 51.4% | 34.3% | 45.7% | 45.7% |
| SQLCoder | 7B | 64.0% | 82.9% | 74.3% | 54.3% | 74.3% | 74.3% |
## How to Cite
```bibtex
@misc{stable-code-instruct-3b,
url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-instruct-3b)},
title={Stable Code 3B},
author={Phung, Duy, and Pinnaparaju, Nikhil and Adithyan, Reshinth and Tow, Jonathan and Cooper, Nathan}
}
``` |