smb-vision-large-1202
This model is trained from scratch using VideoMAE on over 55k CT volumes.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-04
- train_batch_size: 16
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 10.0
Training results
{ "_runtime": 2641.091489502, "_step": 399, "_timestamp": 1733187755.3146417, "_wandb.runtime": 2660, "train/epoch": 8.425414364640885, "train/global_step": 18300, "train/grad_norm": 0.04110511764883995, "train/learning_rate": 0.0001624558726951691, "train/loss": 0.4292 }
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0
- Datasets 3.0.2
- Tokenizers 0.20.1
How to use
# load data using `dataload.py`
model = VideoMAEForPreTraining.from_pretrained(
standardmodelbio/smb-vision-large,
trust_remote_code=True,
)
embedding = model.videomae(batch["image"])
- Downloads last month
- 2