metadata
language:
- tr
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: stann-speechtotext-medium-tr-03_06
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: tr
split: None
args: tr
metrics:
- name: Wer
type: wer
value: 32.78548922762497
stann-speechtotext-medium-tr-03_06
This model is a fine-tuned version of openai/whisper-medium on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2244
- Wer: 32.7855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0307 | 1.3784 | 1000 | 0.2063 | 30.0843 |
0.0131 | 2.7567 | 2000 | 0.2025 | 35.2159 |
0.0016 | 4.1351 | 3000 | 0.2244 | 32.7855 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1