mamba-130m-hf / README.md
ArthurZ's picture
ArthurZ HF staff
Update README.md
2599c97 verified
|
raw
history blame
2.24 kB
metadata
library_name: transformers
tags: []

Mamba

This repository contains the transfromers compatible mamba-2.8b. The checkpoints are untouched, but the full config.json and tokenizer are pushed to this repo.

Usage

You need to install transformers from main until transformers=4.39.0 is released.

pip install git+https://github.com/huggingface/transformers@main

We also recommend you to install both causal_conv_1d and mamba-ssm using:

pip install causal-conv1d>=1.2.0
pip install mamba-ssm

If any of these two is not installed, the "eager" implementation will be used. Otherwise the more optimised cuda kernels will be used.

Generation

You can use the classic generate API:

from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"]

out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))

PEFT finetuning example

In order to finetune using the peft library, we recommend keeping the model in float32!

from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=4,
    logging_dir='./logs',
    logging_steps=10,
    learning_rate=2e-3
)
lora_config =  LoraConfig(
        r=8,
        target_modules="all-linear",
        task_type="CAUSAL_LM",
        bias="none"
)
trainer = SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    peft_config=lora_config,
    train_dataset=dataset,
    dataset_text_field="quote",
)
trainer.train()