paligemma-vqa
This model is a fine-tuned version of google/paligemma-3b-pt-224 on the vq_av2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5071
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5618 | 0.5886 | 1000 | 0.5531 |
0.5268 | 1.1772 | 2000 | 0.5335 |
0.5099 | 1.7657 | 3000 | 0.5071 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for statking/paligemma-vqa
Base model
google/paligemma-3b-pt-224