File size: 14,272 Bytes
f510c16
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0025549ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0025549d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0025549dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0025549e50>", "_build": "<function ActorCriticPolicy._build at 0x7f0025549ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0025549f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f002554d040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f002554d0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f002554d160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f002554d1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f002554d280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f002554d310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0025545720>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678127442336855890, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMZdiD/Cefm+Y7WFPg8w8D98v+6/BWicvw8tkb/Cvd6/jx+PP8JkkruwsWI+P+ffv1Aikb+AlYI/LXQHP1Aefj9u07O/cptsP62dFT/ny8G5KopZv9gazTuga3k8AOiSP3Lnmr+sT54+THcePym0eL/U6Ic/8EABvnyn9j7DRcM/VE/Bvx/jGL7fPYi/Uwo3vy5EeD8USF2/5wawPso2ob+h2cG/O3+mPcpUoLyp8pQ/h2aUvzCyc7/9Dha/1nYhv0KeLb9ongy/ghl8PyOa0T+PiVM/rE+ePkx3Hj8ptHi/Im+5P+LtHD5VXxM/cxYcQG3R4L/kbv29/c1Cv0m9jr+TtpA/Yk0BvlSd+D8Fx8k9VP7CvxZB7rzyzOG+kIwPP3wpsb/sif2/6F48vrsBqD8yclm/VZLhv6BGrb7I5SHAj4lTP6xPnj5Mdx4/KbR4v+YxtT038w0/FQAaP4HUGj/8njm+V3sXvn+c8z2OrGM/cjeOP7DAob3l1Qg9uvXwPQ1Ogb+Alce/UfKNvkfQOT4983I+sEh7vziiKr9cnoc+x/RZv7Or4jzBtIC+M0gmv4+JUz8T/E7ATHcePym0eL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABBwmQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAstMIvgAAAAByT/e/AAAAAMaHnr0AAAAAkTP5PwAAAADR25c9AAAAAGTQ3j8AAAAACwvGPQAAAAAWHey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy4eANgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPq6CL4AAAAASaDmvwAAAABOJt89AAAAAGLh7D8AAAAAEK+8vAAAAAADmvM/AAAAAGLffz0AAAAAan78vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFJQSjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5FqA8AAAAAMwg5r8AAAAA9UYEPgAAAADns9w/AAAAAIdSi70AAAAA1FfrPwAAAADv96+9AAAAADQI/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkuD41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcn7KPQAAAABjRPW/AAAAAFPj5z0AAAAAvQXmPwAAAAB5DOA9AAAAAIBX5D8AAAAAxTK+PQAAAAAZXv2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJm76qWC2+iMAWyUTegDjAF0lEdAsGw1LwnYx3V9lChoBkdAmWQ3446wMmgHTegDaAhHQLBuNdYnv2J1fZQoaAZHQJs3npcHGCJoB03oA2gIR0CwbpUBGQS0dX2UKGgGR0CYxSo2XLNfaAdN6ANoCEdAsG/y6BiCrnV9lChoBkdAnXJlHBk7OmgHTegDaAhHQLBziCW/rSp1fZQoaAZHQJ1hXQjUuthoB03oA2gIR0CwdZclXzUadX2UKGgGR0Cc/yAD7qIKaAdN6ANoCEdAsHYiCL/CInV9lChoBkdAnt0BZlnRLWgHTegDaAhHQLB4L8gpz911fZQoaAZHQJoUqQwK0D5oB03oA2gIR0CwfO09dNWVdX2UKGgGR0CbsmITXarWaAdN6ANoCEdAsH7lBBzFM3V9lChoBkdAm6bal54W12gHTegDaAhHQLB/QHuZ1FJ1fZQoaAZHQJZuOT2WY4RoB03oA2gIR0CwgI7tAs06dX2UKGgGR0CbvLsasIVuaAdN6ANoCEdAsIQP4VRDTnV9lChoBkdAmUmIgA6uGWgHTegDaAhHQLCGkAh0Qsh1fZQoaAZHQJxyYhje9BdoB03oA2gIR0CwhxwNsnAqdX2UKGgGR0CcmyV6u4gBaAdN6ANoCEdAsIlaIuXeFnV9lChoBkdAl9fwbp/wzGgHTegDaAhHQLCNm5wOvuB1fZQoaAZHQJmaHOAy2x9oB03oA2gIR0Cwj5s8kleGdX2UKGgGR0CVzC3iaRZEaAdN6ANoCEdAsI/00YTCcnV9lChoBkdAmfCRPwd8zGgHTegDaAhHQLCRQKu0TlF1fZQoaAZHQJvcal41P31oB03oA2gIR0CwlNBeb/fgdX2UKGgGR0CdQ5hUzbeuaAdN6ANoCEdAsJfho+Ofd3V9lChoBkdAnFNUoBq9G2gHTegDaAhHQLCYehwEQoV1fZQoaAZHQJ4vaR1X/5toB03oA2gIR0CwmrohIOH4dX2UKGgGR0CYRAO8kD6naAdN6ANoCEdAsJ5dhUipvXV9lChoBkdAlMAT3mFJx2gHTegDaAhHQLCgVdfb9Ih1fZQoaAZHQJyPB+PRzBBoB03oA2gIR0CwoLAUtZmqdX2UKGgGR0Cb3ylKsdT6aAdN6ANoCEdAsKIGX5WRzXV9lChoBkdAnp0z2OAAhmgHTegDaAhHQLCl7fpUxVR1fZQoaAZHQJ6FaGEf1YhoB03oA2gIR0CwqSC31BdEdX2UKGgGR0CZ5j9MK1G9aAdN6ANoCEdAsKm3zErGznV9lChoBkdAnnJ633Hq/2gHTegDaAhHQLCrhVf/m1Z1fZQoaAZHQJxESykbgj1oB03oA2gIR0CwrwjibUgCdX2UKGgGR0CdgrNB4UvgaAdN6ANoCEdAsLD/EHdGiHV9lChoBkdAnFAEehf0E2gHTegDaAhHQLCxXIFvAGl1fZQoaAZHQJ7zWZnctXhoB03oA2gIR0Cwsq4RmK64dX2UKGgGR0CZ0Nm0mdAgaAdN6ANoCEdAsLcTpKSPl3V9lChoBkdAmQJEtI0652gHTegDaAhHQLC6We8PFvR1fZQoaAZHQJwOZkOI68xoB03oA2gIR0Cwut8Jlar4dX2UKGgGR0CZpr3G4qgAaAdN6ANoCEdAsLwp/4Irv3V9lChoBkdAma7xegL7XWgHTegDaAhHQLC/rQDV6NV1fZQoaAZHQJ0oQbwSamZoB03oA2gIR0Cwwa+y/sVtdX2UKGgGR0CbXrfdAPd3aAdN6ANoCEdAsMIM0Ltu1nV9lChoBkdAnQRLB0p3HWgHTegDaAhHQLDDXMSsbNt1fZQoaAZHQJHgC+yquKZoB03oA2gIR0CwyDb5M10ldX2UKGgGR0CZwiaSs8xLaAdN6ANoCEdAsMsWlhw2l3V9lChoBkdAmjiwAdXDFmgHTegDaAhHQLDLbkbPyCp1fZQoaAZHQJcDhfD1oQFoB03oA2gIR0CwzL2XTmW/dX2UKGgGR0CXc1TpgTh6aAdN6ANoCEdAsNBOLjxTbXV9lChoBkdAmEggtWdVemgHTegDaAhHQLDSXZwGW2R1fZQoaAZHQJezLTjNpudoB03oA2gIR0Cw0rvIXCTEdX2UKGgGR0CYs/J2MbWFaAdN6ANoCEdAsNQUMAmzB3V9lChoBkdAk7I+rU9ZBGgHTegDaAhHQLDZiC/XXiB1fZQoaAZHQJa2tO/L1VZoB03oA2gIR0Cw28Vf/m1ZdX2UKGgGR0CYVrOi35N5aAdN6ANoCEdAsNwdTOxB3XV9lChoBkdAmTKoXO4XoGgHTegDaAhHQLDdbM5OrQx1fZQoaAZHQJi6XQla8pVoB03oA2gIR0Cw4Pfjn3cpdX2UKGgGR0CaPtLAYYR/aAdN6ANoCEdAsOLpirksBnV9lChoBkdAm8LyPp6hQGgHTegDaAhHQLDjRBGhEjR1fZQoaAZHQJhk62NNrTJoB03oA2gIR0Cw5NE0rK/3dX2UKGgGR0CUMPHoouwpaAdN6ANoCEdAsOpeeOGTLXV9lChoBkdAmWbnhS9/SmgHTegDaAhHQLDsVcNH6M11fZQoaAZHQJiv4QOFxn5oB03oA2gIR0Cw7K7b5/LDdX2UKGgGR0CZOXHQyAQQaAdN6ANoCEdAsO4FFZxJd3V9lChoBkdAm3hoqoZQ52gHTegDaAhHQLDxnVW0Z3t1fZQoaAZHQJYrNF/hESdoB03oA2gIR0Cw85tC7btadX2UKGgGR0CdJlmhM8HOaAdN6ANoCEdAsPP22F36h3V9lChoBkdAmo8ANPP9k2gHTegDaAhHQLD16jAzpHJ1fZQoaAZHQJrOjcrRSgpoB03oA2gIR0Cw+v486mwadX2UKGgGR0CavKmyxA0LaAdN6ANoCEdAsPz14keIVXV9lChoBkdAmT/DQmeDnWgHTegDaAhHQLD9UetjkMl1fZQoaAZHQJdKokC3gDRoB03oA2gIR0Cw/qYIF/x2dX2UKGgGR0CFZPqsU7CBaAdN6ANoCEdAsQJN9nbqQnV9lChoBkdAlgLGCROk+GgHTegDaAhHQLEEg6jWTX91fZQoaAZHQJixmxLTQVtoB03oA2gIR0CxBQvhIe5ndX2UKGgGR0CWMSwxnFo+aAdN6ANoCEdAsQckvqTr3XV9lChoBkdAm+NmrCFbmmgHTegDaAhHQLELvRmK64F1fZQoaAZHQJyAmv1UVBVoB03oA2gIR0CxDbSF49owdX2UKGgGR0CXD1+o99tuaAdN6ANoCEdAsQ4Vn5BToHV9lChoBkdAlkUg8OkLyGgHTegDaAhHQLEPdHPeHi51fZQoaAZHQJqdWhf0EoxoB03oA2gIR0CxEwtCzC1rdX2UKGgGR0CZ9giMo+fRaAdN6ANoCEdAsRXXzlLeynV9lChoBkdAlpH7BGhEjWgHTegDaAhHQLEWgn+yZ8d1fZQoaAZHQJvi2Dg62fFoB03oA2gIR0CxGMxDw6QvdX2UKGgGR0CY6a9FnZkDaAdN6ANoCEdAsR7aZDzAe3V9lChoBkdAlMdqrNnoPmgHTegDaAhHQLEg2FINEw51fZQoaAZHQJWEsGt6ol5oB03oA2gIR0CxITPjS5RTdX2UKGgGR0CbxWrp7kXDaAdN6ANoCEdAsSJ/fBN21XV9lChoBkdAlUKwZKnNxGgHTegDaAhHQLEmG96C17Z1fZQoaAZHQJeOyzru6VdoB03oA2gIR0CxKECsjmjkdX2UKGgGR0CW1f/i5uqFaAdN6ANoCEdAsSjWnjyWiXV9lChoBkdAlOn/JV81GmgHTegDaAhHQLEq9PyTY/V1fZQoaAZHQJmKvEk0JnhoB03oA2gIR0CxL8URSP2gdX2UKGgGR0CTSt6DGtITaAdN6ANoCEdAsTHYQTVUdnV9lChoBkdAmLK+tOmBOGgHTegDaAhHQLEyOOlO45N1fZQoaAZHQJgc21OTJQtoB03oA2gIR0CxM5UdV/+bdX2UKGgGR0Cd4n+XJHRUaAdN6ANoCEdAsTc1TrE9+3V9lChoBkdAnDaRsqJ/G2gHTegDaAhHQLE55G+K0lZ1fZQoaAZHQJXp1cv/R3NoB03oA2gIR0CxOneenQ6ZdX2UKGgGR0CV9q1YyO7yaAdN6ANoCEdAsTykKw6hg3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}