readme: add initial version of model card
#2
by
stefan-it
- opened
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: de
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- flair
|
6 |
+
- token-classification
|
7 |
+
- sequence-tagger-model
|
8 |
+
base_model: deepset/gbert-base
|
9 |
+
widget:
|
10 |
+
- text: PASt ( KvD ) - Polizeipräsidium Westhessen [ Newsroom ] Wiesbaden ( ots )
|
11 |
+
- Am Sonntag , den 27.01.2019 führte die Autobahnpolizei Wiesbaden in Zusammenarbeit
|
12 |
+
mit der Präsidialwache in der Zeit von 11:00 - 16:00 Uhr eine Geschwindigkeitsmessung
|
13 |
+
in der Baustelle der A66 am Wiesbadener Kreuz durch .
|
14 |
+
---
|
15 |
+
|
16 |
+
# Fine-tuned Flair Model on German MobIE Dataset with AutoTrain
|
17 |
+
|
18 |
+
This Flair model was fine-tuned on the
|
19 |
+
[German MobIE](https://aclanthology.org/2021.konvens-1.22/)
|
20 |
+
NER Dataset using GBERT Base as backbone LM and the 🚀 [AutoTrain](https://github.com/huggingface/autotrain-advanced)
|
21 |
+
library.
|
22 |
+
|
23 |
+
## Dataset
|
24 |
+
|
25 |
+
The [German MobIE](https://github.com/DFKI-NLP/MobIE) dataset is a German-language dataset, which is human-annotated
|
26 |
+
with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The
|
27 |
+
dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated
|
28 |
+
entities, 13.1K of which are linked to a knowledge base.
|
29 |
+
|
30 |
+
The following named entities are annotated:
|
31 |
+
|
32 |
+
* `location-stop`
|
33 |
+
* `trigger`
|
34 |
+
* `organization-company`
|
35 |
+
* `location-city`
|
36 |
+
* `location`
|
37 |
+
* `event-cause`
|
38 |
+
* `location-street`
|
39 |
+
* `time`
|
40 |
+
* `date`
|
41 |
+
* `number`
|
42 |
+
* `duration`
|
43 |
+
* `organization`
|
44 |
+
* `person`
|
45 |
+
* `set`
|
46 |
+
* `distance`
|
47 |
+
* `disaster-type`
|
48 |
+
* `money`
|
49 |
+
* `org-position`
|
50 |
+
* `percent`
|
51 |
+
|
52 |
+
## Fine-Tuning
|
53 |
+
|
54 |
+
The latest [Flair version](https://github.com/flairNLP/flair/tree/42ea3f6854eba04387c38045f160c18bdaac07dc) is used for
|
55 |
+
fine-tuning. Additionally, the model is trained with the
|
56 |
+
[FLERT (Schweter and Akbik (2020)](https://arxiv.org/abs/2011.06993) approach, because the MobIE dataset thankfully
|
57 |
+
comes with document boundary information marker.
|
58 |
+
|
59 |
+
A hyper-parameter search over the following parameters with 5 different seeds per configuration is performed:
|
60 |
+
|
61 |
+
* Batch Sizes: [`16`]
|
62 |
+
* Learning Rates: [`5e-05`, `3e-05`]
|
63 |
+
|
64 |
+
All models are trained with the awesome [AutoTrain Advanced](https://github.com/huggingface/autotrain-advanced) from
|
65 |
+
Hugging Face. More details can be found in this [repository](https://github.com/stefan-it/autotrain-flair-mobie).
|
66 |
+
|
67 |
+
## Results
|
68 |
+
|
69 |
+
A hyper-parameter search with 5 different seeds per configuration is performed and micro F1-score on development set
|
70 |
+
is reported:
|
71 |
+
|
72 |
+
| Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
|
73 |
+
|--------------------|-------------|-----------------|-------------|-------------|--------------|-----------------|
|
74 |
+
| `bs16-e10-lr5e-05` | [0.8446][1] | [**0.8495**][2] | [0.8455][3] | [0.8419][4] | [0.8476][5] | 0.8458 ± 0.0029 |
|
75 |
+
| `bs16-e10-lr3e-05` | [0.8392][6] | [0.8445][7] | [0.8495][8] | [0.8381][9] | [0.8449][10] | 0.8432 ± 0.0046 |
|
76 |
+
|
77 |
+
[1]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-1
|
78 |
+
[2]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-2
|
79 |
+
[3]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-3
|
80 |
+
[4]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-4
|
81 |
+
[5]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-5
|
82 |
+
[6]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-1
|
83 |
+
[7]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-2
|
84 |
+
[8]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-3
|
85 |
+
[9]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-4
|
86 |
+
[10]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-5
|
87 |
+
|
88 |
+
The result in bold shows the performance of this model.
|
89 |
+
|
90 |
+
Additionally, the Flair [training log](training.log) and [TensorBoard logs](tensorboard) are also uploaded to the model
|
91 |
+
hub.
|