|
--- |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: XLMRoberta-base-amazon-massive-Intent |
|
results: [] |
|
widget: |
|
- text: staubsauge den flur |
|
datasets: |
|
- AmazonScience/massive |
|
language: |
|
- en |
|
- ru |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# XLMRoberta-base-amazon-massive-Intent |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the MASSIVE dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5620 |
|
- Accuracy: 0.8751 |
|
- F1: 0.8269 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 2.4641 | 1.0 | 1440 | 1.4258 | 0.6709 | 0.4126 | |
|
| 1.1447 | 2.0 | 2880 | 0.8477 | 0.8060 | 0.6318 | |
|
| 0.7437 | 3.0 | 4320 | 0.6688 | 0.8409 | 0.7060 | |
|
| 0.5543 | 4.0 | 5760 | 0.6006 | 0.8601 | 0.7813 | |
|
| 0.4375 | 5.0 | 7200 | 0.5780 | 0.8635 | 0.7937 | |
|
| 0.3763 | 6.0 | 8640 | 0.5748 | 0.8694 | 0.8170 | |
|
| 0.3265 | 7.0 | 10080 | 0.5620 | 0.8751 | 0.8269 | |
|
| 0.2916 | 8.0 | 11520 | 0.5701 | 0.8756 | 0.8260 | |
|
| 0.2628 | 9.0 | 12960 | 0.5728 | 0.8760 | 0.8271 | |
|
| 0.2474 | 10.0 | 14400 | 0.5740 | 0.8770 | 0.8288 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |