Step-Audio-TTS-3B / modeling_step1.py
buyun's picture
add custom ops
3d3fa83 verified
import math
from typing import Optional, Tuple, Union, List
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_step1 import Step1Config
from transformers.cache_utils import Cache, DynamicCache
from einops import rearrange
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
logger = logging.get_logger(__name__)
def build_alibi_cache(block_size, n_heads, dtype, device):
# get slopes
n = 2 ** math.floor(math.log2(n_heads)) # nearest 2**n to n_heads
m0 = 2.0 ** (-8.0 / n)
# 2^(-8/n), 2^(-8*2/n), 2^(-8*3/n), ...
slopes = torch.pow(m0, torch.arange(1, n + 1))
if n < n_heads:
m1 = 2.0 ** (-4.0 / n)
# 2^(-8/(2n)), 2^(-8*3/(2n)), 2^(-8*5/(2n)), ...
mm = torch.pow(m1, torch.arange(1, 1 + 2 * (n_heads - n), 2))
slopes = torch.cat([slopes, mm])
slopes = slopes.to(device)
tril = torch.tril(torch.ones(1, 1, block_size, block_size, device=device))
bias_rows = torch.arange(block_size, device=device).view(1, -1)
bias_cols = torch.arange(block_size, device=device).view(-1, 1)
bias = -torch.sqrt(bias_cols - bias_rows)
bias = bias.view(1, block_size, block_size) * slopes.view(-1, 1, 1)
bias = bias.masked_fill(tril == 0, float("-inf"))
return bias.type(dtype)
class StepRMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5):
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x: torch.Tensor):
var = x.float().pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(var + self.eps).to(x.dtype)
x = x * self.weight
return x
class StepAttention(torch.nn.Module):
def __init__(self, hidden_size, num_heads, num_groups, layer_idx: int):
super().__init__()
self.num_heads = num_heads
self.num_groups = num_groups
self.hidden_size = hidden_size
self.head_dim = hidden_size // num_heads
self.q_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
self.k_proj = torch.nn.Linear(
hidden_size, num_groups * self.head_dim, bias=False
)
self.v_proj = torch.nn.Linear(
hidden_size, num_groups * self.head_dim, bias=False
)
self.o_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
self.layer_idx = layer_idx
def flash_attn_func(self, q, k, v, dropout_p=0.0, softmax_scale=None, causal=True,
return_attn_probs=False, tp_group_rank=0, tp_group_size=1):
softmax_scale = q.size(-1) ** (-0.5) if softmax_scale is None else softmax_scale
return torch.ops.Optimus.fwd(q, k, v, None, dropout_p, softmax_scale, causal, return_attn_probs, None, tp_group_rank, tp_group_size)[0]
def forward(
self,
x: torch.Tensor,
past_key_value: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
):
q: torch.Tensor = self.q_proj(x)
k: torch.Tensor = self.k_proj(x)
v: torch.Tensor = self.v_proj(x)
if past_key_value is not None:
cache_kwargs = {"cache_position": cache_position}
k, v = past_key_value.update(k, v, self.layer_idx, cache_kwargs)
q = rearrange(q, "b s (h d) -> b s h d", h=self.num_heads)
k = rearrange(k, "b s (g d) -> b s g d", g=self.num_groups)
v = rearrange(v, "b s (g d) -> b s g d", g=self.num_groups)
try:
if self.head_dim not in (64, 128):
raise ValueError("head_dim must be 64 or 128")
attn_output = self.flash_attn_func(q, k, v)
attn_output = attn_output.flatten(-2, -1)
except:
k = k.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
v = v.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
attention_mask = build_alibi_cache(
k.size(1), self.num_heads, dtype=q.dtype, device=q.device
)[:, :, -q.size(1) :, :].contiguous()
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
attn_output: torch.Tensor = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attention_mask
)
attn_output = attn_output.transpose(1, 2).flatten(-2, -1)
out = self.o_proj(attn_output)
return out, None # attn weights are not returned
class StepMLP(torch.nn.Module):
def __init__(self, hidden_size, intermediate_size):
super().__init__()
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
def forward(self, x):
gate = self.gate_proj(x)
up = self.up_proj(x)
x = torch.nn.functional.silu(gate) * up
x = self.down_proj(x)
return x
class StepLayer(torch.nn.Module):
def __init__(self, config: Step1Config, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.self_attn = StepAttention(
hidden_size=config.hidden_size,
num_heads=config.num_attention_heads,
num_groups=config.num_attention_groups,
layer_idx=layer_idx,
)
self.mlp = StepMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
)
self.input_layernorm = StepRMSNorm(
hidden_size=config.hidden_size, eps=config.rms_norm_eps
)
self.post_attention_layernorm = StepRMSNorm(
hidden_size=config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(hidden_states, past_key_value, attention_mask, cache_position)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, )
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class StepPreTrainedModel(PreTrainedModel):
config_class = Step1Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["StepLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Step1Model(StepPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
Args:
config: Step1Config
"""
def __init__(self, config: Step1Config):
super().__init__(config)
self.config = config
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = torch.nn.Sequential(
*[
StepLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = StepRMSNorm(
hidden_size=config.hidden_size, eps=config.rms_norm_eps
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
causal_mask = attention_mask
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
past_key_value=past_key_values,
cache_position=cache_position,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=None,
)
return output if return_dict else output.to_tuple()
class Step1ForCausalLM(StepPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Step1Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits,
labels=labels,
vocab_size=self.config.vocab_size,
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)