|
import math |
|
from typing import Optional, Tuple, Union, List |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from transformers.generation import GenerationMixin |
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
from .configuration_step1 import Step1Config |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from einops import rearrange |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def build_alibi_cache(block_size, n_heads, dtype, device): |
|
|
|
n = 2 ** math.floor(math.log2(n_heads)) |
|
m0 = 2.0 ** (-8.0 / n) |
|
|
|
slopes = torch.pow(m0, torch.arange(1, n + 1)) |
|
if n < n_heads: |
|
m1 = 2.0 ** (-4.0 / n) |
|
|
|
mm = torch.pow(m1, torch.arange(1, 1 + 2 * (n_heads - n), 2)) |
|
slopes = torch.cat([slopes, mm]) |
|
slopes = slopes.to(device) |
|
|
|
tril = torch.tril(torch.ones(1, 1, block_size, block_size, device=device)) |
|
|
|
bias_rows = torch.arange(block_size, device=device).view(1, -1) |
|
bias_cols = torch.arange(block_size, device=device).view(-1, 1) |
|
bias = -torch.sqrt(bias_cols - bias_rows) |
|
bias = bias.view(1, block_size, block_size) * slopes.view(-1, 1, 1) |
|
bias = bias.masked_fill(tril == 0, float("-inf")) |
|
|
|
return bias.type(dtype) |
|
|
|
|
|
class StepRMSNorm(torch.nn.Module): |
|
def __init__(self, hidden_size, eps=1e-5): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter(torch.ones(hidden_size)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor): |
|
var = x.float().pow(2).mean(-1, keepdim=True) |
|
x = x * torch.rsqrt(var + self.eps).to(x.dtype) |
|
x = x * self.weight |
|
return x |
|
|
|
|
|
class StepAttention(torch.nn.Module): |
|
def __init__(self, hidden_size, num_heads, num_groups, layer_idx: int): |
|
super().__init__() |
|
|
|
self.num_heads = num_heads |
|
self.num_groups = num_groups |
|
self.hidden_size = hidden_size |
|
self.head_dim = hidden_size // num_heads |
|
|
|
self.q_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False) |
|
self.k_proj = torch.nn.Linear( |
|
hidden_size, num_groups * self.head_dim, bias=False |
|
) |
|
self.v_proj = torch.nn.Linear( |
|
hidden_size, num_groups * self.head_dim, bias=False |
|
) |
|
self.o_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False) |
|
|
|
self.layer_idx = layer_idx |
|
|
|
def flash_attn_func(self, q, k, v, dropout_p=0.0, softmax_scale=None, causal=True, |
|
return_attn_probs=False, tp_group_rank=0, tp_group_size=1): |
|
softmax_scale = q.size(-1) ** (-0.5) if softmax_scale is None else softmax_scale |
|
return torch.ops.Optimus.fwd(q, k, v, None, dropout_p, softmax_scale, causal, return_attn_probs, None, tp_group_rank, tp_group_size)[0] |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
past_key_value: Optional[Cache] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
): |
|
|
|
q: torch.Tensor = self.q_proj(x) |
|
k: torch.Tensor = self.k_proj(x) |
|
v: torch.Tensor = self.v_proj(x) |
|
if past_key_value is not None: |
|
cache_kwargs = {"cache_position": cache_position} |
|
k, v = past_key_value.update(k, v, self.layer_idx, cache_kwargs) |
|
|
|
q = rearrange(q, "b s (h d) -> b s h d", h=self.num_heads) |
|
k = rearrange(k, "b s (g d) -> b s g d", g=self.num_groups) |
|
v = rearrange(v, "b s (g d) -> b s g d", g=self.num_groups) |
|
|
|
try: |
|
if self.head_dim not in (64, 128): |
|
raise ValueError("head_dim must be 64 or 128") |
|
attn_output = self.flash_attn_func(q, k, v) |
|
attn_output = attn_output.flatten(-2, -1) |
|
except: |
|
k = k.repeat_interleave(self.num_heads // self.num_groups, dim=-2) |
|
v = v.repeat_interleave(self.num_heads // self.num_groups, dim=-2) |
|
|
|
attention_mask = build_alibi_cache( |
|
k.size(1), self.num_heads, dtype=q.dtype, device=q.device |
|
)[:, :, -q.size(1) :, :].contiguous() |
|
|
|
q = q.transpose(1, 2) |
|
k = k.transpose(1, 2) |
|
v = v.transpose(1, 2) |
|
|
|
attn_output: torch.Tensor = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=attention_mask |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).flatten(-2, -1) |
|
|
|
out = self.o_proj(attn_output) |
|
return out, None |
|
|
|
|
|
class StepMLP(torch.nn.Module): |
|
def __init__(self, hidden_size, intermediate_size): |
|
super().__init__() |
|
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False) |
|
|
|
def forward(self, x): |
|
gate = self.gate_proj(x) |
|
up = self.up_proj(x) |
|
x = torch.nn.functional.silu(gate) * up |
|
x = self.down_proj(x) |
|
return x |
|
|
|
|
|
class StepLayer(torch.nn.Module): |
|
def __init__(self, config: Step1Config, layer_idx: int): |
|
super().__init__() |
|
self.layer_idx = layer_idx |
|
self.self_attn = StepAttention( |
|
hidden_size=config.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
num_groups=config.num_attention_groups, |
|
layer_idx=layer_idx, |
|
) |
|
self.mlp = StepMLP( |
|
hidden_size=config.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
) |
|
self.input_layernorm = StepRMSNorm( |
|
hidden_size=config.hidden_size, eps=config.rms_norm_eps |
|
) |
|
self.post_attention_layernorm = StepRMSNorm( |
|
hidden_size=config.hidden_size, eps=config.rms_norm_eps |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
): |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
hidden_states, self_attn_weights = self.self_attn(hidden_states, past_key_value, attention_mask, cache_position) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states, ) |
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
return outputs |
|
|
|
|
|
class StepPreTrainedModel(PreTrainedModel): |
|
config_class = Step1Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["StepLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class Step1Model(StepPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] |
|
|
|
Args: |
|
config: Step1Config |
|
""" |
|
|
|
def __init__(self, config: Step1Config): |
|
super().__init__(config) |
|
self.config = config |
|
self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size) |
|
|
|
self.layers = torch.nn.Sequential( |
|
*[ |
|
StepLayer(config, layer_idx) |
|
for layer_idx in range(config.num_hidden_layers) |
|
] |
|
) |
|
|
|
self.norm = StepRMSNorm( |
|
hidden_size=config.hidden_size, eps=config.rms_norm_eps |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You must specify exactly one of input_ids or inputs_embeds" |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = ( |
|
past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
) |
|
cache_position = torch.arange( |
|
past_seen_tokens, |
|
past_seen_tokens + inputs_embeds.shape[1], |
|
device=inputs_embeds.device, |
|
) |
|
|
|
causal_mask = attention_mask |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
past_key_value=past_key_values, |
|
cache_position=cache_position, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
output = BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
attentions=None, |
|
) |
|
return output if return_dict else output.to_tuple() |
|
|
|
|
|
class Step1ForCausalLM(StepPreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Step1Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
|
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function( |
|
logits=logits, |
|
labels=labels, |
|
vocab_size=self.config.vocab_size, |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|