base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:807656
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
<p id="pa01" num="0001">An decoding method according to an embodiment
includes a deriving step and an decoding step. The deriving step derives a
first reference value that is a reference value of a weighting factor
based on fixed point precision representing roughness of the weighting
factor that is used for making a motion-compensated prediction of a change
in a pixel value by multiplying a reference image by the weighting factor.
The decoding step decodes a first difference value that is a difference
value between the weighting factor and the first reference value. The
weighting factor is included in a range of predetermined bit precision
having the first reference value at approximate center.
<img id="iaf01" file="imgaf001.tif" wi="146" he="85" img-content="drawing"
img-format="tif"/></p>
sentences:
- DECODING METHOD AND DECODING DEVICE
- >-
METHOD FOR DETERMINING SEMI-SYNCHRONOUS EXPOSURE PARAMETERS AND
ELECTRONIC DEVICE
- HOISTING ROPE MONITORING DEVICE
- source_sentence: >-
<p id="pa01" num="0001">A layered sheet 10 includes a substrate layer 1,
and surface layers 2 and 3 configured to be layered on at least one
surface of the substrate layer 1. The substrate layer 1 contains a first
thermoplastic resin and inorganic fillers. The surface layers 2 and 3
contain a second thermoplastic resin and a conductive material. A content
of the inorganic fillers in the substrate layer 1 is 0.3 to 28 mass% based
on a total amount of the substrate layer.<img id="iaf01"
file="imgaf001.tif" wi="86" he="70" img-content="drawing"
img-format="tif"/><img id="iaf02" file="imgaf002.tif" wi="165" he="117"
img-content="drawing" img-format="tif"/></p>
sentences:
- >-
LAYERED SHEET, CONTAINER, CARRIER TAPE, AND ELECTRONIC COMPONENT
PACKAGING BODY
- BLOCK COPOLYMERS FOR GEL COMPOSITIONS WITH IMPROVED EFFICIENCY
- AN INDICATOR SYSTEM FOR A PERISHABLE PRODUCT CONTAINER
- source_sentence: >-
<p id="pa01" num="0001">A method for manufacturing a gear which
effectively prevent a crack from occurring inside a tooth part when
rolling processing is performed on a teeth part of a gear raw material is
achieved. A method according to one embodiment for manufacturing a gear 15
by performing rolling processing on a tooth part 2a of a sintered gear raw
material 2. The method includes, when the rolling processing is performed
on the tooth part 2a of the gear raw material 2, pressing the gear raw
material 2 toward a center of rotation of the gear raw material 2 by a
rolling machine 4 and, when at least the rolling processing is performed
on the tooth part 2a of the gear raw material 2 toward a center of a
thickness thereof by a pressing machine 5, pressing a region A where an
internal density of the tooth part 2a of the gear raw material 2
decreases.</p><p id="pa02" num="0002">The invention also relates to an
apparatus for manufacturing a gear.
<img id="iaf01" file="imgaf001.tif" wi="106" he="68" img-content="drawing"
img-format="tif"/></p>
sentences:
- >-
COMMUNICATION METHOD, RELATED APPARATUS AND DEVICE AND COMPUTER-READABLE
STORAGE MEDIUM
- METHOD AND APPARATUS FOR MANUFACTURING GEAR
- >-
IMPLANTABLE MEDICAL DEVICE AND METHOD OF PROVIDING WIRE CONNECTIONS FOR
IT
- source_sentence: >-
<p id="pa01" num="0001">This application discloses a data reading method,
apparatus, and system, and a distributed system, and belongs to the field
of storage technologies. The method includes: receiving a data read
request sent by a terminal, where the data read request includes a logical
address of target data; locally searching, based on the logical address, a
first slave node for a latest version of the target data; and when it is
determined that the latest version of the target data has been stored in
each of a plurality of slave nodes, sending the latest version of the
target data to the terminal. This application can avoid a rollback of a
version of read data, and this application applies to data reading.<img
id="iaf01" file="imgaf001.tif" wi="62" he="86" img-content="drawing"
img-format="tif"/><img id="iaf02" file="imgaf002.tif" wi="155" he="233"
img-content="drawing" img-format="tif"/></p>
sentences:
- SLIDING MECHANISM AND TERMINAL DEVICE PROVIDED WITH SAME
- >-
PRESSURE-APPLYING DEVICE FOR A SWITCHING MODULE AND METHOD OF CHANGING A
SWITCHING MODULE USING THE SAME
- DATA READING METHOD, DEVICE, SYSTEM, AND DISTRIBUTED SYSTEM
- source_sentence: >-
<p id="pa01" num="0001">An application apparatus (100) includes: an
application needle (24) that applies, to a target, an application material
having its viscosity changing under shear; a drive unit (90) that moves
the application needle (24) up and down; and a controller (80) that
controls the drive unit (90) to move the application needle such that
shear is applied to the application material at a shear speed depending on
a type of the application material and depending on a target application
amount or a target application diameter.<img id="iaf01"
file="imgaf001.tif" wi="78" he="56" img-content="drawing"
img-format="tif"/></p>
sentences:
- HEAT PROCESSING DEVICE
- Electric motor
- COATING APPARATUS AND COATING METHOD
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: sentence transformers/all mpnet base v2
type: sentence-transformers/all-mpnet-base-v2
metrics:
- type: cosine_accuracy@1
value: 0.592
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.711
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.751
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.814
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.592
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.237
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1502
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0814
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.592
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.711
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.751
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.814
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6987639783179386
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6624964285714287
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6665468875517868
name: Cosine Map@100
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("stephenhib/all-mpnet-base-v2-patabs-1epoc-batch32-100000")
# Run inference
sentences = [
'<p id="pa01" num="0001">An application apparatus (100) includes: an application needle (24) that applies, to a target, an application material having its viscosity changing under shear; a drive unit (90) that moves the application needle (24) up and down; and a controller (80) that controls the drive unit (90) to move the application needle such that shear is applied to the application material at a shear speed depending on a type of the application material and depending on a target application amount or a target application diameter.<img id="iaf01" file="imgaf001.tif" wi="78" he="56" img-content="drawing" img-format="tif"/></p>',
'COATING APPARATUS AND COATING METHOD',
'Electric motor',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
sentence-transformers/all-mpnet-base-v2
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.592 |
cosine_accuracy@3 | 0.711 |
cosine_accuracy@5 | 0.751 |
cosine_accuracy@10 | 0.814 |
cosine_precision@1 | 0.592 |
cosine_precision@3 | 0.237 |
cosine_precision@5 | 0.1502 |
cosine_precision@10 | 0.0814 |
cosine_recall@1 | 0.592 |
cosine_recall@3 | 0.711 |
cosine_recall@5 | 0.751 |
cosine_recall@10 | 0.814 |
cosine_ndcg@10 | 0.6988 |
cosine_mrr@10 | 0.6625 |
cosine_map@100 | 0.6665 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 807,656 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 45 tokens
- mean: 237.14 tokens
- max: 384 tokens
- min: 3 tokens
- mean: 12.34 tokens
- max: 101 tokens
- Samples:
positive anchor The invention relates to an image fusion method and device, which includes: obtaining a first short-focus image and a first long-focus image acquired by a short-focus sensor and a long-focus sensor at the same time; according to the focal lengths of a short-focus lens and a long-focus lens, calculating a reduction coefficient corresponding to the first long-focus image when the sizes of the same target in the first long-focus image and the first short-focus image are matched; performing a reduction processing on the first long-focus image according to the reduction coefficient to obtain a second long-focus image; according to a relative angle of the current long-focus lens and short-focus lens, calculating a position of the second long-focus image in the first short-focus image when the positions of the same target in the second long-focus image and the first short-focus image are matched; and according to the position of the second long-focus image in the first short-focus image, covering the first short-focus image by the second long-focus image to obtain a fused image. According to embodiments of the present application, on the premise of considering both the monitoring range and the definition, the monitoring cost is reduced, and the monitoring efficiency is improved.
IMAGE FUSION METHOD AND DEVICE
The present invention discloses an ex vivo method for the diagnostic and/or prognostic assessment of the acute-on-chronic liver failure (ACLF) syndrome in a patient with a liver disorder characterized in that it comprises the steps of: (a) measuring a panel of metabolites related with acylcarnitines-sialic acid-acetylated amino acids and/or sugar alcohols and derivatives-tryptophan metabolism-catecholamines derivatives in a biological sample of said patient; and (b) comparing the level of said metabolites in the sample with the level of said metabolites in healthy patients; and wherein an increase of at least 1.2 times of the level of said metabolites is indicative of ACLF syndrome.
METHOD FOR THE DIAGNOSTIC AND/OR PROGNOSTIC ASSESSMENT OF ACUTE-ON-CHRONIC LIVER FAILURE SYNDROME IN PATIENTS WITH LIVER DISORDERS
A valve housing receives a spool 34 and the spool has a regulating chamber 52 selectively communicating a supply line to a return line. The spool 34 is biased in one direction by a spring force and there is a second force biasing the spool in an opposed direction whith the second bias force being provided by a fluid pressure within a hydraulic system associated which the pressure regulating valve. The amount of communication between the supply port 111 and the return port 99 is regulated by a position of the spool 34 as the bias force from the fluid pressure change. Damper chambers are provided on opposed sides of the spool and serve to dampen a speed of movement of the spool and a supply line for supplying fluid into the damper chambers through check valves 44, 64. The supply line serves to assist in purging air outwardly of the damper chambers.
Air purging pressure regulating valve
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 2learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | sentence-transformers/all-mpnet-base-v2_cosine_map@100 |
---|---|---|---|
0.032 | 100 | 0.1433 | 0.6217 |
0.064 | 200 | 0.0953 | 0.6447 |
0.096 | 300 | 0.1084 | 0.6612 |
0.128 | 400 | 0.0817 | 0.6546 |
0.16 | 500 | 0.0768 | 0.6512 |
0.192 | 600 | 0.0779 | 0.6466 |
0.224 | 700 | 0.0709 | 0.6594 |
0.256 | 800 | 0.0813 | 0.6441 |
0.288 | 900 | 0.0597 | 0.6454 |
0.32 | 1000 | 0.0744 | 0.6496 |
0.352 | 1100 | 0.0669 | 0.6608 |
0.384 | 1200 | 0.0657 | 0.6566 |
0.416 | 1300 | 0.0489 | 0.6660 |
0.448 | 1400 | 0.0643 | 0.6597 |
0.48 | 1500 | 0.0593 | 0.6587 |
0.512 | 1600 | 0.0598 | 0.6613 |
0.544 | 1700 | 0.0737 | 0.6570 |
0.576 | 1800 | 0.0661 | 0.6655 |
0.608 | 1900 | 0.0499 | 0.6613 |
0.64 | 2000 | 0.0641 | 0.6616 |
0.672 | 2100 | 0.0679 | 0.6662 |
0.704 | 2200 | 0.0521 | 0.6715 |
0.736 | 2300 | 0.0569 | 0.6651 |
0.768 | 2400 | 0.0507 | 0.6679 |
0.8 | 2500 | 0.0405 | 0.6678 |
0.832 | 2600 | 0.0548 | 0.6690 |
0.864 | 2700 | 0.0403 | 0.6692 |
0.896 | 2800 | 0.0613 | 0.6649 |
0.928 | 2900 | 0.0485 | 0.6673 |
0.96 | 3000 | 0.0495 | 0.6674 |
0.992 | 3100 | 0.0546 | 0.6665 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.2.1
- Transformers: 4.45.2
- PyTorch: 2.3.1.post300
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}