Haplo-7B-Pro-Video / README.md
stevengrove's picture
Update README.md
0c72ccc verified
metadata
license: apache-2.0

Image

HaploVL - A Single-Transformer Baseline for Multi-Modal Understanding

Project page 

HaploVL is a multimodal understanding foundation model that delivers comprehensive cross-modal understanding capabilities for text, images, and video inputs through a single transformer architecture.

Highlights

This repository contains the PyTorch implementation, model weights, and training code for Haplo.

Image

🌟 Unified Architecture: Single transformer model supporting early fusion of multi-modal inputs and auto-regressive response generation
🌟 Efficient Training: Optimized training recipe leveraging pre-trained knowledge with reduced resource consumption
🌟 Scalable Design: Flexible framework supporting both Ascend NPU and GPU environments
🌟 Extended Capabilities: Native support for multiple image understanding and video processing

Getting Started

Installation

# Option1:
pip install git+https://github.com/Tencent/HaploVLM.git

# Option2:
git clone https://github.com/Tencent/HaploVLM.git
cd HaploVLM
pip install -e . -v

Quick Start

Basic usage example:

from haplo import HaploProcessor, HaploForConditionalGeneration

processor = HaploProcessor.from_pretrained('stevengrove/Haplo-7B-Pro-Video')
model = HaploForConditionalGeneration.from_pretrained(
    'stevengrove/Haplo-7B-Pro-Video',
    torch_dtype=torch.bfloat16
).to('cuda')

conversation = [
    {'role': 'user', 'content': [
        {'type': 'text', 'text': 'Describe this image.'},
        {'type': 'image', 'path': 'assets/example-image.png'}
    ]}
]

inputs = processor.apply_chat_template(
    conversation,
    add_generation_prompt=True,
    return_tensors='pt'
).to('cuda')

outputs = model.generate(inputs)
print(processor.decode(outputs[0]))

Acknowledgement

@article{yang2024haplo,
  title={HaploVL: A Single-Transformer Baseline for Multi-Modal Understanding},
  author={Yang, Rui and Song, Lin and Xiao, Yicheng and Huang, Runhui and Ge, Yixiao and Shan, Ying and Zhao, Hengshuang},
  journal={arXiv preprint arXiv:xxxx.xxxxx},
  year={2025}
}