|
--- |
|
language: |
|
- pt |
|
thumbnail: Portuguese BERT for the Legal Domain |
|
tags: |
|
- sentence-transformers |
|
- transformers |
|
- bert |
|
- pytorch |
|
- sentence-similarity |
|
license: mit |
|
pipeline_tag: sentence-similarity |
|
datasets: |
|
- stjiris/portuguese-legal-sentences-v0 |
|
- assin |
|
- assin2 |
|
- stsb_multi_mt |
|
widget: |
|
- source_sentence: O advogado apresentou as provas ao juíz. |
|
sentences: |
|
- O juíz leu as provas. |
|
- O juíz leu o recurso. |
|
- O juíz atirou uma pedra. |
|
model-index: |
|
- name: BERTimbau |
|
results: |
|
- task: |
|
name: STS |
|
type: STS |
|
metrics: |
|
- name: Pearson Correlation - assin Dataset |
|
type: Pearson Correlation |
|
value: 0.7859786062022175 |
|
- name: Pearson Correlation - assin2 Dataset |
|
type: Pearson Correlation |
|
value: 0.8154293682156972 |
|
- name: Pearson Correlation - stsb_multi_mt pt Dataset |
|
type: Pearson Correlation |
|
value: 0.8442486730001203 |
|
--- |
|
|
|
|
|
![INESC-ID](https://www.inesc-id.pt/wp-content/uploads/2019/06/INESC-ID-logo_01.png) |
|
![A Semantic Search System for Supremo Tribunal de Justiça](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/_static/logo.png) |
|
|
|
Work developed as part of [Project IRIS](https://www.inesc-id.pt/projects/PR07005/). |
|
|
|
Thesis: [A Semantic Search System for Supremo Tribunal de Justiça](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/) |
|
|
|
# stjiris/bert-large-portuguese-cased-legal-tsdae-sts-v1 (Legal BERTimbau) |
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
stjiris/bert-large-portuguese-cased-legal-tsdae derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large. |
|
|
|
It was trained using the TSDAE technique with a learning rate 1e-5 [Legal Sentences from +-30000 documents](https://huggingface.co/datasets/stjiris/portuguese-legal-sentences-v1.0) 21.2k training steps (best performance for our semantic search system implementation) |
|
|
|
It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2), [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. 'lr': 1e-5 |
|
|
|
## Usage (Sentence-Transformers) |
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
Then you can use the model like this: |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"] |
|
|
|
model = SentenceTransformer('stjiris/bert-large-portuguese-cased-legal-tsdae-sts-v0') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
## Usage (HuggingFace Transformers) |
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-sts-v0') |
|
model = AutoModel.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-sts-v0') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1028, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) |
|
) |
|
``` |
|
|
|
|
|
|
|
## Citing & Authors |
|
|
|
### Contributions |
|
[@rufimelo99](https://github.com/rufimelo99) |
|
|
|
If you use this work, please cite: |
|
|
|
```bibtex |
|
@inproceedings{MeloSemantic, |
|
author = {Melo, Rui and Santos, Professor Pedro Alexandre and Dias, Professor Jo{\~ a}o}, |
|
title = {A {Semantic} {Search} {System} for {Supremo} {Tribunal} de {Justi}{\c c}a}, |
|
} |
|
|
|
@inproceedings{souza2020bertimbau, |
|
author = {F{\'a}bio Souza and |
|
Rodrigo Nogueira and |
|
Roberto Lotufo}, |
|
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, |
|
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, |
|
year = {2020} |
|
} |
|
|
|
@inproceedings{fonseca2016assin, |
|
title={ASSIN: Avaliacao de similaridade semantica e inferencia textual}, |
|
author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S}, |
|
booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal}, |
|
pages={13--15}, |
|
year={2016} |
|
} |
|
|
|
@inproceedings{real2020assin, |
|
title={The assin 2 shared task: a quick overview}, |
|
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo}, |
|
booktitle={International Conference on Computational Processing of the Portuguese Language}, |
|
pages={406--412}, |
|
year={2020}, |
|
organization={Springer} |
|
} |
|
@InProceedings{huggingface:dataset:stsb_multi_mt, |
|
title = {Machine translated multilingual STS benchmark dataset.}, |
|
author={Philip May}, |
|
year={2021}, |
|
url={https://github.com/PhilipMay/stsb-multi-mt} |
|
} |
|
|
|
``` |