CNEC_2_0_ext_slavicbert
This model is a fine-tuned version of DeepPavlov/bert-base-bg-cs-pl-ru-cased on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.2252
- Precision: 0.8578
- Recall: 0.8864
- F1: 0.8719
- Accuracy: 0.9697
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1347 | 4.46 | 1000 | 0.1375 | 0.8279 | 0.8620 | 0.8446 | 0.9656 |
0.0681 | 8.93 | 2000 | 0.1519 | 0.8345 | 0.8710 | 0.8524 | 0.9668 |
0.0406 | 13.39 | 3000 | 0.1663 | 0.8519 | 0.8789 | 0.8652 | 0.9679 |
0.0276 | 17.86 | 4000 | 0.1719 | 0.8623 | 0.8888 | 0.8754 | 0.9690 |
0.02 | 22.32 | 5000 | 0.1920 | 0.8505 | 0.8809 | 0.8654 | 0.9686 |
0.015 | 26.79 | 6000 | 0.1984 | 0.8570 | 0.8893 | 0.8729 | 0.9693 |
0.0108 | 31.25 | 7000 | 0.2048 | 0.8587 | 0.8864 | 0.8723 | 0.9692 |
0.0092 | 35.71 | 8000 | 0.2179 | 0.8606 | 0.8888 | 0.8745 | 0.9696 |
0.0076 | 40.18 | 9000 | 0.2252 | 0.8564 | 0.8878 | 0.8718 | 0.9696 |
0.0057 | 44.64 | 10000 | 0.2262 | 0.8571 | 0.8873 | 0.8720 | 0.9698 |
0.0054 | 49.11 | 11000 | 0.2252 | 0.8578 | 0.8864 | 0.8719 | 0.9697 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for stulcrad/CNEC_2_0_ext_slavicbert
Base model
DeepPavlov/bert-base-bg-cs-pl-ru-casedEvaluation results
- Precision on cnecvalidation set self-reported0.858
- Recall on cnecvalidation set self-reported0.886
- F1 on cnecvalidation set self-reported0.872
- Accuracy on cnecvalidation set self-reported0.970