Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
trained on mini-ultrachat 10%
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for styalai/gpt2o-chatbot-13
Base model
styalai/gpt2o-chatbot-02
Finetuned
styalai/gpt2o-chatbot-03
Finetuned
styalai/gpt2o-chatbot-07
Finetuned
styalai/gpt2o-chatbot-08
Finetuned
styalai/gpt2o-chatbot-09
Finetuned
styalai/gpt2o-chatbot-11