lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4726
  • Answer: {'precision': 0.8964677222898904, 'recall': 0.9008567931456548, 'f1': 0.8986568986568988, 'number': 817}
  • Header: {'precision': 0.7446808510638298, 'recall': 0.5882352941176471, 'f1': 0.6572769953051643, 'number': 119}
  • Question: {'precision': 0.8958517210944396, 'recall': 0.9424326833797586, 'f1': 0.918552036199095, 'number': 1077}
  • Overall Precision: 0.8892
  • Overall Recall: 0.9046
  • Overall F1: 0.8968
  • Overall Accuracy: 0.8387

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4172 10.53 200 0.8947 {'precision': 0.8194444444444444, 'recall': 0.8665850673194615, 'f1': 0.842355740630577, 'number': 817} {'precision': 0.5284552845528455, 'recall': 0.5462184873949579, 'f1': 0.5371900826446281, 'number': 119} {'precision': 0.845414847161572, 'recall': 0.8987929433611885, 'f1': 0.8712871287128714, 'number': 1077} 0.8166 0.8649 0.8400 0.8019
0.0368 21.05 400 1.1681 {'precision': 0.8507972665148064, 'recall': 0.9143206854345165, 'f1': 0.8814159292035397, 'number': 817} {'precision': 0.45962732919254656, 'recall': 0.6218487394957983, 'f1': 0.5285714285714286, 'number': 119} {'precision': 0.888671875, 'recall': 0.8449396471680595, 'f1': 0.866254164683484, 'number': 1077} 0.8391 0.8599 0.8494 0.8104
0.0132 31.58 600 1.3663 {'precision': 0.8438914027149321, 'recall': 0.9130966952264382, 'f1': 0.8771310993533216, 'number': 817} {'precision': 0.6511627906976745, 'recall': 0.47058823529411764, 'f1': 0.5463414634146342, 'number': 119} {'precision': 0.8687943262411347, 'recall': 0.9099350046425255, 'f1': 0.888888888888889, 'number': 1077} 0.8494 0.8852 0.8669 0.8101
0.0061 42.11 800 1.4360 {'precision': 0.8648018648018648, 'recall': 0.9082007343941249, 'f1': 0.8859701492537313, 'number': 817} {'precision': 0.6867469879518072, 'recall': 0.4789915966386555, 'f1': 0.5643564356435644, 'number': 119} {'precision': 0.8886910062333037, 'recall': 0.9266480965645311, 'f1': 0.9072727272727273, 'number': 1077} 0.8706 0.8927 0.8815 0.8045
0.0043 52.63 1000 1.4084 {'precision': 0.8550057537399309, 'recall': 0.9094247246022031, 'f1': 0.8813760379596678, 'number': 817} {'precision': 0.6344086021505376, 'recall': 0.4957983193277311, 'f1': 0.5566037735849056, 'number': 119} {'precision': 0.8842010771992819, 'recall': 0.914577530176416, 'f1': 0.8991328160657235, 'number': 1077} 0.8608 0.8877 0.8741 0.8265
0.002 63.16 1200 1.4017 {'precision': 0.8716136631330977, 'recall': 0.9057527539779682, 'f1': 0.8883553421368547, 'number': 817} {'precision': 0.6593406593406593, 'recall': 0.5042016806722689, 'f1': 0.5714285714285715, 'number': 119} {'precision': 0.8825088339222615, 'recall': 0.9275766016713092, 'f1': 0.9044816659121775, 'number': 1077} 0.8682 0.8937 0.8808 0.8194
0.0018 73.68 1400 1.4379 {'precision': 0.857307249712313, 'recall': 0.9118727050183598, 'f1': 0.8837485172004744, 'number': 817} {'precision': 0.6761904761904762, 'recall': 0.5966386554621849, 'f1': 0.6339285714285715, 'number': 119} {'precision': 0.8941068139963168, 'recall': 0.9015784586815228, 'f1': 0.8978270920018492, 'number': 1077} 0.8675 0.8877 0.8775 0.8242
0.0014 84.21 1600 1.4741 {'precision': 0.8871359223300971, 'recall': 0.8947368421052632, 'f1': 0.890920170627666, 'number': 817} {'precision': 0.7590361445783133, 'recall': 0.5294117647058824, 'f1': 0.6237623762376238, 'number': 119} {'precision': 0.8777969018932874, 'recall': 0.947075208913649, 'f1': 0.9111210361768646, 'number': 1077} 0.8768 0.9011 0.8888 0.8407
0.0005 94.74 1800 1.5542 {'precision': 0.871824480369515, 'recall': 0.9241126070991432, 'f1': 0.8972073677956032, 'number': 817} {'precision': 0.7111111111111111, 'recall': 0.5378151260504201, 'f1': 0.6124401913875598, 'number': 119} {'precision': 0.9029038112522686, 'recall': 0.9238625812441968, 'f1': 0.9132629646626893, 'number': 1077} 0.8814 0.9011 0.8912 0.8219
0.0008 105.26 2000 1.4726 {'precision': 0.8964677222898904, 'recall': 0.9008567931456548, 'f1': 0.8986568986568988, 'number': 817} {'precision': 0.7446808510638298, 'recall': 0.5882352941176471, 'f1': 0.6572769953051643, 'number': 119} {'precision': 0.8958517210944396, 'recall': 0.9424326833797586, 'f1': 0.918552036199095, 'number': 1077} 0.8892 0.9046 0.8968 0.8387
0.0003 115.79 2200 1.5233 {'precision': 0.8910179640718563, 'recall': 0.9106487148102815, 'f1': 0.900726392251816, 'number': 817} {'precision': 0.71, 'recall': 0.5966386554621849, 'f1': 0.6484018264840181, 'number': 119} {'precision': 0.9049773755656109, 'recall': 0.9285051067780873, 'f1': 0.916590284142988, 'number': 1077} 0.8897 0.9016 0.8956 0.8354
0.0001 126.32 2400 1.5261 {'precision': 0.8817966903073287, 'recall': 0.9130966952264382, 'f1': 0.8971737823211066, 'number': 817} {'precision': 0.7319587628865979, 'recall': 0.5966386554621849, 'f1': 0.6574074074074073, 'number': 119} {'precision': 0.8998194945848376, 'recall': 0.9257195914577531, 'f1': 0.9125858123569794, 'number': 1077} 0.8844 0.9011 0.8927 0.8362

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.