File size: 35,814 Bytes
aee9709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
# coding=utf-8
"""PyTorch CoEncoder model."""

import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn

from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.image_processing_utils import select_best_resolution
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10
)
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
from .configuration_co_encoder import CoEncoderConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "CoEncoderConfig"


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """

    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,

    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)

    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


@dataclass
class CoEncoderCausalLMOutputWithPast(ModelOutput):
    """

    Base class for CoEncoder causal language model (or autoregressive) outputs.



    Args:

        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):

            Language modeling loss (for next-token prediction).

        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):

            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):

            Tuple of `tuple(torch.FloatTensor)` of length `config.context_config.num_layers`, with each tuple having 2 tensors of shape

            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)



            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see

            `past_key_values` input) to speed up sequential decoding.

        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):

            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +

            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.



            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):

            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,

            sequence_length)`.



            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention

            heads.

        context_hidden_states (`torch.FloatTensor`, *optional*):

            A `torch.FloatTensor` of size (batch_size, sequence_length, hidden_size)`.

            context_hidden_states of the model produced by the context encoder and after projecting the last hidden state.

    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    context_hidden_states: Optional[torch.FloatTensor] = None


class CoEncoderDynamicAttention(nn.Module):
    """

    Attention mechanism adapted for dynamic output size based on Mistral's architecture. This attention layer computes

    the output attention scores which are used to determine the pooling size dynamically.

    """

    def __init__(self, config: CoEncoderConfig):
        super().__init__()

        self.hidden_size = config.context_config.hidden_size
        self.num_heads = config.context_config.num_attention_heads
        self.head_dim = getattr(config.context_config, "head_dim", self.hidden_size // self.num_heads)
        self.num_key_value_heads = config.context_config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads

        # Query, Key, Value, and Output Projections
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, 1, bias=False)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        output_attentions: bool = False,

    ):
        # Get input dimensions
        bsz, seq_len, hidden_size = hidden_states.size()

        # Query, Key, Value projections
        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # Reshape and transpose to [batch_size, num_heads, seq_len, head_dim]
        query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        # Repeat key and value states for multi-head attention
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        # Compute attention scores
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
            attn_weights = attn_weights + causal_mask

        # Apply softmax to get attention probabilities
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        # Apply attention to values
        attn_output = torch.matmul(attn_weights, value_states)

        # Reshape attention output
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, seq_len, -1)

        # Project to output dimension
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights


class CoEncoderDynamicFlashAttention2(CoEncoderDynamicAttention):
    def __init__(self, config: CoEncoderConfig):
        super().__init__(config)
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
        self.is_causal = False  # Assuming non-causal attention for this context
        self.config = config

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        output_attentions: bool = False,

    ):
        output_attentions = False

        # Get input dimensions
        bsz, seq_len, hidden_size = hidden_states.size()
        q_len = seq_len

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        # Repeat key and value states for multi-head attention
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seem to be silently casted in float32, which might be related to"
                f" upcasted embedding or layer norm layers in float32. Casting back the input to {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        # Define attention_mask assuming all positions are valid
        # because flash_attn does not support custom attention_mask
        attention_mask = None

        # Define other required variables
        position_ids = None
        dropout_rate = getattr(self.config.context_config, "attention_dropout", 0.0)

        attn_output = _flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            position_ids=position_ids,
            dropout=dropout_rate,
            sliding_window=getattr(self, "sliding_window", None),
            use_top_left_mask=self._flash_attn_uses_top_left_mask,
            is_causal=self.is_causal,
        )

        attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights


class CoEncoderDynamicWeightedAvgPool1d(nn.Module):
    """

    A module that dynamically determines the output size based on input

    and performs weighted average pooling with separate attention mechanisms

    for output size estimation and weighted pooling.

    """
    def __init__(self, config, output_size_min=32, output_size_max=131072):
        super().__init__()
        # Attention mechanism for estimating output size
        self.size_estimation_attention = CoEncoderDynamicFlashAttention2(config)
        # Attention mechanism for weighted pooling
        self.weighted_pooling_attention = CoEncoderDynamicFlashAttention2(config)
        self.output_size_min = output_size_min
        self.output_size_max = (
            config.context_config.max_position_embeddings if config.context_config.max_position_embeddings is not None else output_size_max
        )
        self.scale_param = nn.Parameter(torch.tensor(0.01))

    def forward(self, hidden_states):
        """

        Args:

            x: Input tensor of shape (batch_size, seq_len, hidden_size)



        Returns:

            Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:

                - pooled_output: Padded tensor of compressed sequences (batch_size, max_pooled_len, hidden_size)

                - attention_mask: Binary mask indicating valid tokens (batch_size, max_pooled_len)

                - dynamic_output_sizes: Dynamic output sizes for each batch (batch_size,)

        """
        batch_size, seq_len, hidden_size = hidden_states.size()
        device = hidden_states.device

        # Estimate output size using attention mechanism
        # attn_output_size: (batch_size, seq_len, 1)
        attn_output_size, _ = self.size_estimation_attention(hidden_states)

        # Calculate dynamic output sizes for each batch item
        # (batch_size, seq_len, 1) -> (batch_size, 1)
        batch_attn_means = torch.sigmoid(attn_output_size).mean(dim=1)
        scaled_batch_means = batch_attn_means * self.scale_param.to(batch_attn_means.dtype)

        # Calculate dynamic output sizes (batch_size,)
        dynamic_output_sizes = (
            (scaled_batch_means * (self.output_size_max - self.output_size_min)) + self.output_size_min
        ).int().squeeze(-1)

        # Get the maximum output size across the batch
        max_pooled_len = dynamic_output_sizes.max().item()

        # Compute attention weights for weighted pooling
        # attn_output_weights: (batch_size, seq_len, 1)
        attn_output_weights, _ = self.weighted_pooling_attention(hidden_states)
        # Normalize with sigmoid function for use as weights
        # attention_weights: (batch_size, seq_len)
        attention_weights = torch.sigmoid(attn_output_weights).squeeze(-1)

        # Initialize output tensors
        # pooled_output: (batch_size, max_pooled_len, hidden_size)
        pooled_output = torch.zeros(batch_size, max_pooled_len, hidden_size, device=device, dtype=hidden_states.dtype)
        # attention_mask: (batch_size, max_pooled_len)
        attention_mask = torch.zeros(batch_size, max_pooled_len, dtype=torch.bool, device=device)

        for batch_idx in range(batch_size):
            output_size = dynamic_output_sizes[batch_idx].item()
            item_input = hidden_states[batch_idx]  # Shape: (seq_len, hidden_size)
            item_weights = attention_weights[batch_idx]  # Shape: (seq_len)
            # print(f"Sequence lenfth of context: {item_input.size(0)}")
            # print(f"Output length: {output_size}")
   
            # Perform weighted pooling
            pooled_values = []
            # Split the sequence evenly
            intervals = torch.linspace(0, seq_len, steps=output_size + 1).long()
            for i in range(output_size):
                start = intervals[i].item()
                end = intervals[i + 1].item()
                chunk_input = item_input[start:end]  # Shape: (chunk_size, hidden_size)
                chunk_weights = item_weights[start:end]  # Shape: (chunk_size)
                if chunk_weights.sum() == 0:
                    # If the sum of weights is zero, add a zero vector
                    pooled_value = torch.zeros(hidden_size, device=device, dtype=hidden_states.dtype)
                else:
                    # Calculate weighted average
                    weighted_input = chunk_input * chunk_weights.unsqueeze(-1)  # Shape: (chunk_size, hidden_size)
                    pooled_value = weighted_input.sum(dim=0) / (chunk_weights.sum() + 1e-8)  # Shape: (hidden_size)
                pooled_values.append(pooled_value)
            # Convert the result to a tensor
            pooled_values = torch.stack(pooled_values)  # Shape: (output_size, hidden_size)
            # Store the result
            pooled_output[batch_idx, -output_size:] = pooled_values.squeeze(0)
            attention_mask[batch_idx, -output_size:] = True

        return pooled_output, attention_mask, dynamic_output_sizes


class CoEncoderContextLanguageConnector(nn.Module):
    def __init__(self, config: CoEncoderConfig):
        super().__init__()

        self.dynamic_pooling = CoEncoderDynamicWeightedAvgPool1d(config)

        self.linear_1 = nn.Linear(
            config.context_config.hidden_size,
            config.text_config.hidden_size,
            bias=True
        )
        self.act = ACT2FN[config.projector_hidden_act]
        self.linear_2 = nn.Linear(
            config.text_config.hidden_size,
            config.text_config.hidden_size,
            bias=True
        )

    def forward(self, context_features):
        # context_features: [batch_size, seq_len, hidden_size]
        # Apply dynamic adaptive average pooling with attention
        pooled_output, attention_mask, dynamic_output_sizes = self.dynamic_pooling(
            hidden_states=context_features
        )
        # pooled_output: [batch_size, max_pooled_len, hidden_size]

        hidden_states = self.linear_1(pooled_output)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        
        return hidden_states, attention_mask


class CoEncoderContextTower(nn.Module):
    def __init__(self, config: CoEncoderConfig):
        super().__init__()

        self.tower = AutoModelForCausalLM.from_config(
            config.context_config,
            attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
        )
        self.select_layer = config.context_feature_layer
    
    def feature_select(self, llm_outputs):
        hidden_states = llm_outputs.hidden_states
        return hidden_states[self.select_layer]

    def forward(

        self,

        input_ids,

        inputs_embeds,

        attention_mask

    ):
        outputs = self.tower(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            output_hidden_states=True
        )
        
        features = self.feature_select(outputs)
        return features
    

class CoEncoderPreTrainedModel(PreTrainedModel):
    config_class = CoEncoderConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = [] # ["CoEncoderContextLanguageConnector", "CoEncoderContextTower"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def _init_weights(self, module):
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class CoEncoderForConditionalGeneration(CoEncoderPreTrainedModel):
    def __init__(self, config: CoEncoderConfig):
        super().__init__(config)
        self.context_tower = CoEncoderContextTower(config)
        self.connector = CoEncoderContextLanguageConnector(config)

        self.language_model = AutoModelForCausalLM.from_config(
            config.text_config,
            attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
        )

        self.vocab_size = config.text_config.vocab_size
        self.ignore_index = config.ignore_index if hasattr(config, 'ignore_index') else -100
        self.begin_of_context_token_id = config.begin_of_context_token_id
        self.end_of_context_token_id = config.end_of_context_token_id
        self.context_eos_token_id = config.context_config.eos_token_id
        
        self.post_init()
    
    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def get_context_input_embeddings(self):
        return self.context_tower.tower.get_input_embeddings()
    
    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def set_context_input_embeddings(self, value):
        self.context_tower.tower.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()
    
    def get_context_output_embeddings(self):
        return self.context_tower.tower.get_output_embeddings()
    
    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_context_output_embeddings(self, new_embeddings):
        self.context_tower.tower.set_output_embeddings(new_embeddings)
    
    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def set_context_encoder(self, decoder):
        self.context_tower.tower.set_decoder(decoder)
    
    def get_decoder(self):
        return self.language_model.get_decoder()

    def get_context_encoder(self):
        return self.context_tower.tower.get_decoder()
    
    def tie_weights(self):
        return self.language_model.tie_weights()
    
    def context_tie_weights(self):
        return self.context_tower.tower.tie_weights()
    
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds
    
    def _merge_context_features(

        self,

        context_features = None,

        inputs_embeds = None,

        attention_mask = None,

        context_attention_mask=None,

        position_ids=None,

        labels=None,

    ):
        if context_features is None:
            return inputs_embeds, attention_mask, position_ids, labels

        batch_size, seq_length, embed_dim = inputs_embeds.shape
        context_seq_len = context_features.size(1)
        
        # Create embeddings for begin and end of context tokens
        begin_context_embed = self.get_input_embeddings()(torch.tensor(self.begin_of_context_token_id, device=context_features.device))
        end_context_embed = self.get_input_embeddings()(torch.tensor(self.end_of_context_token_id, device=context_features.device))
        
        # Determine the actual lengths of context sequences (excluding padding)
        if context_attention_mask is not None:
            # context_attention_mask: [batch_size, context_seq_len, 1]
            context_attention_mask = context_attention_mask.squeeze(-1)  # [batch_size, context_seq_len]
            # Sum over sequence length to get actual lengths
            context_lengths = context_attention_mask.sum(dim=1).long()  # [batch_size]
        else:
            # If no context_attention_mask is provided, assume full length
            context_lengths = torch.full((batch_size,), context_seq_len, device=context_features.device, dtype=torch.long)
            context_attention_mask = torch.ones(batch_size, context_seq_len, device=context_features.device, dtype=torch.long)
        
        # Rearrange context features to include padding at the beginning
        # Identify the maximum context length (excluding padding)
        max_context_length = context_lengths.max().item()
        # Calculate the amount of padding needed for each sample
        padding_lengths = context_seq_len - context_lengths  # [batch_size]
        
        # Create new context_features with padding at the beginning
        new_context_features = []
        for i in range(batch_size):
            padding_len = padding_lengths[i].item()
            # Create padding embeddings (zeros)
            padding_embed = torch.zeros(padding_len, embed_dim, device=context_features.device, dtype=context_features.dtype)
            # Get actual context features (excluding padding)
            actual_context = context_features[i, padding_len:context_seq_len]
            # Concatenate padding, begin token, actual context, end token
            sample_context = torch.cat([
                padding_embed,
                begin_context_embed.unsqueeze(0),
                actual_context,
                end_context_embed.unsqueeze(0)
            ], dim=0)  # [context_seq_len + 2, embed_dim]
            new_context_features.append(sample_context)
        # Stack to create [batch_size, new_context_seq_len, embed_dim]
        context_features = torch.stack(new_context_features, dim=0)
        new_context_seq_len = context_features.size(1)
        
        # Update context_attention_mask accordingly
        new_context_attention_mask = []
        for i in range(batch_size):
            padding_len = padding_lengths[i].item()
            # Create padding mask (zeros)
            padding_mask = torch.zeros(padding_len, device=context_features.device, dtype=attention_mask.dtype)
            # Begin and end token masks
            begin_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
            end_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
            # Actual context attention mask (excluding padding)
            actual_mask = context_attention_mask[i, padding_len:context_seq_len]
            # Concatenate masks
            sample_mask = torch.cat([
                padding_mask,
                begin_attention,
                actual_mask,
                end_attention
            ], dim=0)  # [context_seq_len + 2]
            new_context_attention_mask.append(sample_mask)
        # Stack to create [batch_size, new_context_seq_len]
        context_attention_mask = torch.stack(new_context_attention_mask, dim=0)
        
        # Concatenate context features with input embeddings
        new_inputs_embeds = torch.cat([context_features, inputs_embeds], dim=1)  # [batch_size, total_seq_len, embed_dim]
        
        # Concatenate attention masks
        new_attention_mask = torch.cat([context_attention_mask, attention_mask], dim=1)
        
        # Create new position_ids
        total_seq_len = new_inputs_embeds.size(1)
        new_position_ids = torch.arange(total_seq_len, device=inputs_embeds.device).unsqueeze(0).expand(batch_size, -1)
        
        # Update labels if provided
        if labels is not None:
            # Create ignore labels for context (including padding and special tokens)
            context_labels = torch.full((batch_size, new_context_seq_len), self.ignore_index, device=labels.device, dtype=labels.dtype)
            new_labels = torch.cat([context_labels, labels], dim=1)
        else:
            new_labels = None
        
        return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels


    @replace_return_docstrings(output_type=CoEncoderCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(

        self,

        context_input_ids: torch.LongTensor = None,

        context_inputs_embeds: Optional[torch.FloatTensor] = None,

        context_attention_mask: Optional[torch.Tensor] = None,

        input_ids: torch.LongTensor = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[List[torch.FloatTensor]] = None,

        labels: Optional[torch.LongTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple, CoEncoderCausalLMOutputWithPast]:
        """

        Perform a forward pass through the CoEncoder model, optionally conditioning on context input.



        Args:

            context_input_ids (`torch.LongTensor` of shape `(batch_size, context_sequence_length)`, *optional*):

                Token IDs of the context input sequence.

            context_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, context_sequence_length, hidden_size)`, *optional*):

                Pre-computed context embeddings. If provided, will not compute embeddings from context_input_ids.

            context_attention_mask (`torch.Tensor` of shape `(batch_size, context_sequence_length)`, *optional*):

                Attention mask for context input sequence.

            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Token IDs of the input sequence.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):

                Optionally, instead of passing `input_ids`, you can pass an embedded representation directly.

            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

                Mask to avoid performing attention on padding token indices.

            position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Indices of positions of each input sequence token.

            past_key_values (`List[torch.FloatTensor]`, *optional*):

                Pre-computed hidden-states (key and value tensors) that can be used to speed up sequential decoding.

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the language modeling loss.

            use_cache (`bool`, *optional*):

                If `True`, past key values will be used to speed up decoding.

            output_attentions (`bool`, *optional*):

                If `True`, return the attention tensors for each layer.

            output_hidden_states (`bool`, *optional*):

                If `True`, return the hidden states of all layers.

            return_dict (`bool`, *optional*):

                If `True`, return a `CoEncoderCausalLMOutputWithPast` instead of a plain tuple.



        Returns:

            `Union[Tuple, CoEncoderCausalLMOutputWithPast]`: A tuple containing various model outputs or a `CoEncoderCausalLMOutputWithPast` instance.

                The CoEncoderCausalLMOutputWithPast contains the following fields:

                    - loss (`torch.FloatTensor`, *optional*): Language modeling loss if labels provided, None otherwise.

                    - logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, vocab_size)`): Prediction scores.

                    - past_key_values (`List[torch.FloatTensor]`, *optional*): Pre-computed hidden states for efficient decoding.

                    - hidden_states (`Tuple[torch.FloatTensor]`, *optional*): Layer hidden states if output_hidden_states=True.

                    - attentions (`Tuple[torch.FloatTensor]`, *optional*): Layer attention weights if output_attentions=True.

                    - context_hidden_states (`torch.FloatTensor`, *optional*): Final hidden states from the context tower.

        """

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict


        all_inputs_none = (
            input_ids is None and 
            inputs_embeds is None and 
            context_input_ids is None and 
            context_inputs_embeds is None
        )
        
        if all_inputs_none:
            raise ValueError("You must provide either non-empty input_ids/inputs_embeds or context_input_ids/context_inputs_embeds.")

        skip_context = False
        if context_input_ids is not None:
            if torch.all(context_input_ids == self.context_eos_token_id):
                skip_context = True

        if not skip_context and (context_input_ids is not None or context_inputs_embeds is not None):
            context_features = self.context_tower(
                input_ids=context_input_ids,
                inputs_embeds=context_inputs_embeds,
                attention_mask=context_attention_mask,
            )
            context_features, context_attention_mask = self.connector(
                context_features=context_features
            )
        else:
            context_features = None
            context_attention_mask = None


        if inputs_embeds is None and input_ids is not None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

        if inputs_embeds is not None:
            inputs_embeds, attention_mask, position_ids, labels = self._merge_context_features(
                context_features=context_features,
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                context_attention_mask=context_attention_mask,
                position_ids=position_ids,
                labels=labels,
            )
        else:
            inputs_embeds = context_features
            attention_mask = context_attention_mask

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs[0]

        loss = None
        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CoEncoderCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            context_hidden_states=context_features,
        )

    def prepare_inputs_for_generation(

        self,

        input_ids,

        past_key_values=None,

        attention_mask=None,

        inputs_embeds=None,

        context_features=None,

        **kwargs

    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "context_features": context_features,
            }
        )
        return model_inputs