metadata
library_name: transformers
license: apache-2.0
base_model: facebook/hubert-large-ls960-ft
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: hubert-large-ls960-ft-lg-CV_GRAIN-v1
results: []
hubert-large-ls960-ft-lg-CV_GRAIN-v1
This model is a fine-tuned version of facebook/hubert-large-ls960-ft on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1921
- Wer: 0.0389
- Cer: 0.0143
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.1234 | 1.0 | 1385 | 0.3733 | 0.4333 | 0.0910 |
0.5164 | 2.0 | 2770 | 0.2676 | 0.2680 | 0.0634 |
0.4223 | 3.0 | 4155 | 0.2327 | 0.2027 | 0.0508 |
0.3671 | 4.0 | 5540 | 0.2044 | 0.1743 | 0.0446 |
0.3242 | 5.0 | 6925 | 0.1881 | 0.1466 | 0.0393 |
0.292 | 6.0 | 8310 | 0.1792 | 0.1307 | 0.0357 |
0.2669 | 7.0 | 9695 | 0.1740 | 0.1225 | 0.0341 |
0.244 | 8.0 | 11080 | 0.1647 | 0.1120 | 0.0321 |
0.2248 | 9.0 | 12465 | 0.1678 | 0.1033 | 0.0305 |
0.2111 | 10.0 | 13850 | 0.1653 | 0.0974 | 0.0291 |
0.1958 | 11.0 | 15235 | 0.1624 | 0.0910 | 0.0275 |
0.1852 | 12.0 | 16620 | 0.1482 | 0.0884 | 0.0266 |
0.1718 | 13.0 | 18005 | 0.1580 | 0.0859 | 0.0261 |
0.164 | 14.0 | 19390 | 0.1537 | 0.0802 | 0.0246 |
0.1531 | 15.0 | 20775 | 0.1525 | 0.0789 | 0.0246 |
0.1456 | 16.0 | 22160 | 0.1476 | 0.0761 | 0.0236 |
0.1376 | 17.0 | 23545 | 0.1513 | 0.0730 | 0.0232 |
0.1329 | 18.0 | 24930 | 0.1508 | 0.0732 | 0.0231 |
0.1267 | 19.0 | 26315 | 0.1580 | 0.0719 | 0.0222 |
0.123 | 20.0 | 27700 | 0.1538 | 0.0670 | 0.0214 |
0.1158 | 21.0 | 29085 | 0.1625 | 0.0677 | 0.0218 |
0.1111 | 22.0 | 30470 | 0.1451 | 0.0626 | 0.0205 |
0.1049 | 23.0 | 31855 | 0.1652 | 0.0635 | 0.0210 |
0.1023 | 24.0 | 33240 | 0.1562 | 0.0650 | 0.0209 |
0.0982 | 25.0 | 34625 | 0.1541 | 0.0626 | 0.0203 |
0.0954 | 26.0 | 36010 | 0.1545 | 0.0618 | 0.0202 |
0.0898 | 27.0 | 37395 | 0.1666 | 0.0598 | 0.0199 |
0.0881 | 28.0 | 38780 | 0.1656 | 0.0575 | 0.0196 |
0.0857 | 29.0 | 40165 | 0.1611 | 0.0590 | 0.0195 |
0.0815 | 30.0 | 41550 | 0.1595 | 0.0584 | 0.0193 |
0.0798 | 31.0 | 42935 | 0.1592 | 0.0576 | 0.0193 |
0.0784 | 32.0 | 44320 | 0.1586 | 0.0568 | 0.0187 |
0.0742 | 33.0 | 45705 | 0.1622 | 0.0568 | 0.0187 |
0.0736 | 34.0 | 47090 | 0.1705 | 0.0554 | 0.0187 |
0.0721 | 35.0 | 48475 | 0.1570 | 0.0530 | 0.0178 |
0.0686 | 36.0 | 49860 | 0.1658 | 0.0543 | 0.0179 |
0.0657 | 37.0 | 51245 | 0.1615 | 0.0526 | 0.0179 |
0.0647 | 38.0 | 52630 | 0.1646 | 0.0519 | 0.0178 |
0.0637 | 39.0 | 54015 | 0.1635 | 0.0515 | 0.0179 |
0.0614 | 40.0 | 55400 | 0.1716 | 0.0521 | 0.0175 |
0.0601 | 41.0 | 56785 | 0.1701 | 0.0504 | 0.0173 |
0.0596 | 42.0 | 58170 | 0.1598 | 0.0514 | 0.0174 |
0.0574 | 43.0 | 59555 | 0.1678 | 0.0506 | 0.0176 |
0.0564 | 44.0 | 60940 | 0.1679 | 0.0486 | 0.0170 |
0.0534 | 45.0 | 62325 | 0.1760 | 0.0490 | 0.0170 |
0.0536 | 46.0 | 63710 | 0.1722 | 0.0494 | 0.0170 |
0.0516 | 47.0 | 65095 | 0.1635 | 0.0486 | 0.0166 |
0.0504 | 48.0 | 66480 | 0.1652 | 0.0489 | 0.0169 |
0.0493 | 49.0 | 67865 | 0.1757 | 0.0480 | 0.0169 |
0.0491 | 50.0 | 69250 | 0.1734 | 0.0481 | 0.0167 |
0.0482 | 51.0 | 70635 | 0.1750 | 0.0479 | 0.0166 |
0.0465 | 52.0 | 72020 | 0.1762 | 0.0481 | 0.0166 |
0.0452 | 53.0 | 73405 | 0.1695 | 0.0461 | 0.0160 |
0.0456 | 54.0 | 74790 | 0.1732 | 0.0464 | 0.0160 |
0.0441 | 55.0 | 76175 | 0.1738 | 0.0455 | 0.0161 |
0.0438 | 56.0 | 77560 | 0.1771 | 0.0457 | 0.0161 |
0.0421 | 57.0 | 78945 | 0.1794 | 0.0452 | 0.0160 |
0.0416 | 58.0 | 80330 | 0.1673 | 0.0440 | 0.0157 |
0.0401 | 59.0 | 81715 | 0.1871 | 0.0448 | 0.0160 |
0.0407 | 60.0 | 83100 | 0.1705 | 0.0448 | 0.0156 |
0.0404 | 61.0 | 84485 | 0.1786 | 0.0446 | 0.0157 |
0.0379 | 62.0 | 85870 | 0.1760 | 0.0435 | 0.0155 |
0.0376 | 63.0 | 87255 | 0.1815 | 0.0445 | 0.0156 |
0.0358 | 64.0 | 88640 | 0.1808 | 0.0444 | 0.0158 |
0.0361 | 65.0 | 90025 | 0.1775 | 0.0433 | 0.0154 |
0.0347 | 66.0 | 91410 | 0.1740 | 0.0438 | 0.0155 |
0.0346 | 67.0 | 92795 | 0.1808 | 0.0437 | 0.0155 |
0.0343 | 68.0 | 94180 | 0.1774 | 0.0418 | 0.0153 |
0.0332 | 69.0 | 95565 | 0.1786 | 0.0408 | 0.0152 |
0.0324 | 70.0 | 96950 | 0.1846 | 0.0428 | 0.0155 |
0.0322 | 71.0 | 98335 | 0.1801 | 0.0422 | 0.0154 |
0.0331 | 72.0 | 99720 | 0.1740 | 0.0408 | 0.0147 |
0.0311 | 73.0 | 101105 | 0.1830 | 0.0418 | 0.0152 |
0.0299 | 74.0 | 102490 | 0.1874 | 0.0417 | 0.0153 |
0.0305 | 75.0 | 103875 | 0.1816 | 0.0411 | 0.0150 |
0.0301 | 76.0 | 105260 | 0.1799 | 0.0398 | 0.0146 |
0.029 | 77.0 | 106645 | 0.1890 | 0.0408 | 0.0149 |
0.0285 | 78.0 | 108030 | 0.1810 | 0.0385 | 0.0146 |
0.0286 | 79.0 | 109415 | 0.1874 | 0.0395 | 0.0147 |
0.0279 | 80.0 | 110800 | 0.1868 | 0.0399 | 0.0148 |
0.0274 | 81.0 | 112185 | 0.1852 | 0.0398 | 0.0147 |
0.0265 | 82.0 | 113570 | 0.1890 | 0.0408 | 0.0148 |
0.0267 | 83.0 | 114955 | 0.1908 | 0.0402 | 0.0148 |
0.0258 | 84.0 | 116340 | 0.1834 | 0.0396 | 0.0146 |
0.0268 | 85.0 | 117725 | 0.1945 | 0.0395 | 0.0146 |
0.0247 | 86.0 | 119110 | 0.1893 | 0.0397 | 0.0145 |
0.0249 | 87.0 | 120495 | 0.1904 | 0.0397 | 0.0145 |
0.0254 | 88.0 | 121880 | 0.1880 | 0.0403 | 0.0147 |
0.0248 | 89.0 | 123265 | 0.1860 | 0.0393 | 0.0146 |
0.0241 | 90.0 | 124650 | 0.1936 | 0.0389 | 0.0146 |
0.0232 | 91.0 | 126035 | 0.1922 | 0.0393 | 0.0144 |
0.0235 | 92.0 | 127420 | 0.1854 | 0.0390 | 0.0143 |
0.0227 | 93.0 | 128805 | 0.1921 | 0.0389 | 0.0143 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3