metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-all-lg-CVGRAIN-v1
results: []
mms-1b-all-lg-CVGRAIN-v1
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0628
- Wer: 0.0835
- Cer: 0.0156
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 80
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.356 | 1.0 | 5827 | 0.1269 | 0.1730 | 0.0304 |
0.2237 | 2.0 | 11654 | 0.1178 | 0.1670 | 0.0300 |
0.2186 | 3.0 | 17481 | 0.1145 | 0.1566 | 0.0275 |
0.2139 | 4.0 | 23308 | 0.1101 | 0.1537 | 0.0270 |
0.211 | 5.0 | 29135 | 0.1062 | 0.1479 | 0.0266 |
0.2088 | 6.0 | 34962 | 0.1060 | 0.1469 | 0.0258 |
0.2072 | 7.0 | 40789 | 0.1032 | 0.1452 | 0.0253 |
0.2043 | 8.0 | 46616 | 0.1002 | 0.1427 | 0.0252 |
0.2039 | 9.0 | 52443 | 0.1015 | 0.1431 | 0.0249 |
0.2024 | 10.0 | 58270 | 0.0990 | 0.1398 | 0.0244 |
0.2006 | 11.0 | 64097 | 0.0934 | 0.1328 | 0.0232 |
0.1994 | 12.0 | 69924 | 0.0921 | 0.1330 | 0.0236 |
0.1981 | 13.0 | 75751 | 0.0955 | 0.1249 | 0.0227 |
0.196 | 14.0 | 81578 | 0.0924 | 0.1276 | 0.0227 |
0.1958 | 15.0 | 87405 | 0.0919 | 0.1231 | 0.0219 |
0.1948 | 16.0 | 93232 | 0.0881 | 0.1216 | 0.0218 |
0.1939 | 17.0 | 99059 | 0.0902 | 0.1210 | 0.0218 |
0.1933 | 18.0 | 104886 | 0.0873 | 0.1216 | 0.0218 |
0.1921 | 19.0 | 110713 | 0.0877 | 0.1231 | 0.0218 |
0.1921 | 20.0 | 116540 | 0.0878 | 0.1179 | 0.0212 |
0.1905 | 21.0 | 122367 | 0.0852 | 0.1148 | 0.0208 |
0.1901 | 22.0 | 128194 | 0.0832 | 0.1121 | 0.0206 |
0.189 | 23.0 | 134021 | 0.0809 | 0.1110 | 0.0206 |
0.188 | 24.0 | 139848 | 0.0797 | 0.1086 | 0.0197 |
0.1873 | 25.0 | 145675 | 0.0809 | 0.1083 | 0.0200 |
0.1864 | 26.0 | 151502 | 0.0813 | 0.1110 | 0.0203 |
0.1858 | 27.0 | 157329 | 0.0824 | 0.1030 | 0.0188 |
0.1854 | 28.0 | 163156 | 0.0820 | 0.1098 | 0.0202 |
0.1847 | 29.0 | 168983 | 0.0798 | 0.1065 | 0.0194 |
0.1842 | 30.0 | 174810 | 0.0774 | 0.1044 | 0.0188 |
0.1827 | 31.0 | 180637 | 0.0769 | 0.1063 | 0.0193 |
0.1818 | 32.0 | 186464 | 0.0767 | 0.1032 | 0.0190 |
0.1815 | 33.0 | 192291 | 0.0754 | 0.1001 | 0.0184 |
0.1811 | 34.0 | 198118 | 0.0745 | 0.1011 | 0.0185 |
0.1806 | 35.0 | 203945 | 0.0758 | 0.1032 | 0.0184 |
0.1797 | 36.0 | 209772 | 0.0771 | 0.0982 | 0.0185 |
0.1792 | 37.0 | 215599 | 0.0744 | 0.0982 | 0.0181 |
0.1788 | 38.0 | 221426 | 0.0730 | 0.0957 | 0.0178 |
0.1776 | 39.0 | 227253 | 0.0730 | 0.0965 | 0.0180 |
0.1772 | 40.0 | 233080 | 0.0742 | 0.0986 | 0.0181 |
0.1765 | 41.0 | 238907 | 0.0721 | 0.0951 | 0.0176 |
0.1757 | 42.0 | 244734 | 0.0719 | 0.0976 | 0.0180 |
0.1748 | 43.0 | 250561 | 0.0713 | 0.0934 | 0.0171 |
0.1747 | 44.0 | 256388 | 0.0718 | 0.0947 | 0.0174 |
0.1742 | 45.0 | 262215 | 0.0702 | 0.0939 | 0.0176 |
0.1732 | 46.0 | 268042 | 0.0705 | 0.0943 | 0.0173 |
0.1726 | 47.0 | 273869 | 0.0695 | 0.0939 | 0.0176 |
0.1725 | 48.0 | 279696 | 0.0700 | 0.0930 | 0.0177 |
0.1711 | 49.0 | 285523 | 0.0696 | 0.0914 | 0.0172 |
0.1713 | 50.0 | 291350 | 0.0696 | 0.0920 | 0.0170 |
0.1705 | 51.0 | 297177 | 0.0689 | 0.0938 | 0.0172 |
0.1698 | 52.0 | 303004 | 0.0705 | 0.0932 | 0.0174 |
0.1691 | 53.0 | 308831 | 0.0672 | 0.0914 | 0.0170 |
0.1685 | 54.0 | 314658 | 0.0673 | 0.0883 | 0.0165 |
0.1685 | 55.0 | 320485 | 0.0686 | 0.0912 | 0.0170 |
0.1674 | 56.0 | 326312 | 0.0684 | 0.0907 | 0.0167 |
0.1667 | 57.0 | 332139 | 0.0692 | 0.0895 | 0.0167 |
0.1667 | 58.0 | 337966 | 0.0682 | 0.0870 | 0.0164 |
0.1661 | 59.0 | 343793 | 0.0667 | 0.0864 | 0.0161 |
0.1651 | 60.0 | 349620 | 0.0665 | 0.0868 | 0.0163 |
0.1649 | 61.0 | 355447 | 0.0660 | 0.0866 | 0.0164 |
0.1642 | 62.0 | 361274 | 0.0644 | 0.0876 | 0.0161 |
0.164 | 63.0 | 367101 | 0.0655 | 0.0858 | 0.0161 |
0.1639 | 64.0 | 372928 | 0.0650 | 0.0874 | 0.0160 |
0.1639 | 65.0 | 378755 | 0.0652 | 0.0868 | 0.0160 |
0.1625 | 66.0 | 384582 | 0.0650 | 0.0882 | 0.0161 |
0.1624 | 67.0 | 390409 | 0.0648 | 0.0866 | 0.0158 |
0.1617 | 68.0 | 396236 | 0.0649 | 0.0853 | 0.0158 |
0.1608 | 69.0 | 402063 | 0.0639 | 0.0841 | 0.0159 |
0.1605 | 70.0 | 407890 | 0.0647 | 0.0889 | 0.0161 |
0.1604 | 71.0 | 413717 | 0.0635 | 0.0858 | 0.0157 |
0.1598 | 72.0 | 419544 | 0.0644 | 0.0868 | 0.0160 |
0.1593 | 73.0 | 425371 | 0.0640 | 0.0849 | 0.0158 |
0.1591 | 74.0 | 431198 | 0.0642 | 0.0849 | 0.0156 |
0.1584 | 75.0 | 437025 | 0.0639 | 0.0847 | 0.0158 |
0.1584 | 76.0 | 442852 | 0.0623 | 0.0841 | 0.0155 |
0.1577 | 77.0 | 448679 | 0.0631 | 0.0841 | 0.0155 |
0.1578 | 78.0 | 454506 | 0.0633 | 0.0839 | 0.0155 |
0.1575 | 79.0 | 460333 | 0.0630 | 0.0835 | 0.0154 |
0.157 | 80.0 | 466160 | 0.0628 | 0.0835 | 0.0156 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0