wav2vec-xlsr-cv-grain-lg_grn_only_v2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0604
  • Wer: 0.0276
  • Cer: 0.0085

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 24
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 48
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
6.8998 0.9984 321 2.7793 1.0 0.8727
3.2905 2.0 643 0.8365 0.9015 0.2478
1.26 2.9984 964 0.3066 0.4268 0.0856
0.6344 4.0 1286 0.1856 0.2137 0.0451
0.4164 4.9984 1607 0.1513 0.1649 0.0364
0.3006 6.0 1929 0.1271 0.1274 0.0285
0.2414 6.9984 2250 0.1111 0.1083 0.0251
0.2035 8.0 2572 0.1076 0.0992 0.0228
0.169 8.9984 2893 0.1076 0.0931 0.0213
0.1501 10.0 3215 0.1007 0.0920 0.0213
0.1291 10.9984 3536 0.0892 0.0772 0.0185
0.1122 12.0 3858 0.0917 0.0746 0.0180
0.1053 12.9984 4179 0.0903 0.0707 0.0173
0.0972 14.0 4501 0.0863 0.0673 0.0164
0.0847 14.9984 4822 0.0849 0.0616 0.0157
0.0754 16.0 5144 0.0870 0.0657 0.0158
0.0751 16.9984 5465 0.0830 0.0610 0.0154
0.0722 18.0 5787 0.0922 0.0621 0.0159
0.0665 18.9984 6108 0.0784 0.0601 0.0153
0.0634 20.0 6430 0.0856 0.0545 0.0146
0.0601 20.9984 6751 0.0881 0.0584 0.0151
0.0545 22.0 7073 0.0876 0.0558 0.0144
0.0503 22.9984 7394 0.0815 0.0523 0.0137
0.0511 24.0 7716 0.0842 0.0521 0.0140
0.0477 24.9984 8037 0.0808 0.0532 0.0151
0.0433 26.0 8359 0.0770 0.0482 0.0125
0.0441 26.9984 8680 0.0803 0.0510 0.0137
0.0424 28.0 9002 0.0771 0.0460 0.0123
0.0373 28.9984 9323 0.0727 0.0462 0.0122
0.0376 30.0 9645 0.0768 0.0525 0.0134
0.0325 30.9984 9966 0.0801 0.0508 0.0134
0.0371 32.0 10288 0.0714 0.0445 0.0118
0.0339 32.9984 10609 0.0738 0.0458 0.0122
0.0329 34.0 10931 0.0672 0.0388 0.0104
0.0294 34.9984 11252 0.0750 0.0408 0.0113
0.0322 36.0 11574 0.0768 0.0423 0.0117
0.028 36.9984 11895 0.0735 0.0386 0.0117
0.0279 38.0 12217 0.0756 0.0414 0.0122
0.0259 38.9984 12538 0.0842 0.0495 0.0135
0.0273 40.0 12860 0.0775 0.0456 0.0131
0.026 40.9984 13181 0.0729 0.0427 0.0119
0.0247 42.0 13503 0.0728 0.0410 0.0115
0.0247 42.9984 13824 0.0709 0.0430 0.0118
0.023 44.0 14146 0.0632 0.0362 0.0101
0.0206 44.9984 14467 0.0675 0.0347 0.0106
0.0203 46.0 14789 0.0750 0.0419 0.0125
0.0215 46.9984 15110 0.0644 0.0358 0.0104
0.0172 48.0 15432 0.0693 0.0332 0.0098
0.0191 48.9984 15753 0.0694 0.0341 0.0102
0.0175 50.0 16075 0.0716 0.0369 0.0108
0.018 50.9984 16396 0.0635 0.0351 0.0101
0.0162 52.0 16718 0.0711 0.0382 0.0106
0.0167 52.9984 17039 0.0605 0.0343 0.0097
0.0173 54.0 17361 0.0699 0.0321 0.0097
0.0157 54.9984 17682 0.0726 0.0330 0.0100
0.0128 56.0 18004 0.0693 0.0323 0.0096
0.0169 56.9984 18325 0.0602 0.0306 0.0092
0.014 58.0 18647 0.0638 0.0332 0.0097
0.0133 58.9984 18968 0.0630 0.0325 0.0097
0.0151 60.0 19290 0.0645 0.0328 0.0098
0.0137 60.9984 19611 0.0642 0.0351 0.0098
0.0135 62.0 19933 0.0569 0.0284 0.0084
0.0119 62.9984 20254 0.0595 0.0308 0.0088
0.011 64.0 20576 0.0601 0.0263 0.0086
0.0113 64.9984 20897 0.0639 0.0282 0.0090
0.0125 66.0 21219 0.0588 0.0291 0.0090
0.0103 66.9984 21540 0.0632 0.0289 0.0090
0.0094 68.0 21862 0.0600 0.0282 0.0087
0.0098 68.9984 22183 0.0615 0.0278 0.0085
0.0089 70.0 22505 0.0598 0.0278 0.0084
0.0105 70.9984 22826 0.0611 0.0291 0.0081
0.0083 72.0 23148 0.0623 0.0293 0.0084
0.0092 72.9984 23469 0.0590 0.0302 0.0090
0.0068 74.0 23791 0.0604 0.0276 0.0085

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
11
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sulaimank/wav2vec-xlsr-cv-grain-lg_grn_only_v2

Finetuned
(524)
this model

Collection including sulaimank/wav2vec-xlsr-cv-grain-lg_grn_only_v2