File size: 9,021 Bytes
6460da8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import logging
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

def load_data(start_year=2000, end_year=2017):
    csv_files = [f'atp_matches_{year}.csv' for year in range(start_year, end_year + 1)]
    dataframes = []

    for file in csv_files:
        try:
            data = pd.read_csv(file)
            logging.info(f"Loaded {file}: {len(data)} rows")
            dataframes.append(data)
        except FileNotFoundError:
            logging.warning(f"File {file} not found.")
            continue

    if not dataframes:
        raise FileNotFoundError("No CSV files found. Ensure data files are present.")

    combined_df = pd.concat(dataframes, ignore_index=True)
    logging.info(f"Total rows after combining all dataframes: {len(combined_df)}")
    return combined_df

def preprocess_data(df):
    logging.info(f"Before preprocessing: {len(df)} rows")
    df = df.loc[:, ~df.columns.duplicated()]
    df = df.drop_duplicates().reset_index(drop=True)

    df['tourney_date'] = pd.to_datetime(df['tourney_date'], format='%Y%m%d', errors='coerce')
    df['tourney_date_ordinal'] = df['tourney_date'].apply(lambda x: x.toordinal() if pd.notnull(x) else None)

    df['winner_id'] = df['winner_id'].fillna(df['winner_id'].mode().iloc[0])
    df['loser_id'] = df['loser_id'].fillna(df['loser_id'].mode().iloc[0])
    df['winner_name'] = df['winner_name'].fillna('Unknown')
    df['loser_name'] = df['loser_name'].fillna('Unknown')

    logging.info(f"After preprocessing: {len(df)} rows")
    logging.info(f"Date range: {df['tourney_date'].min()} to {df['tourney_date'].max()}")
    logging.info(f"Years present in the data: {sorted(df['tourney_date'].dt.year.unique())}")
    return df

def engineer_features(df):
    numeric_columns = ['winner_rank', 'loser_rank', 'winner_seed', 'loser_seed', 
                       'winner_age', 'loser_age', 'w_svpt', 'l_svpt', 'w_ace', 
                       'l_ace', 'w_df', 'l_df', 'w_bpSaved', 'l_bpSaved',
                       'tourney_date_ordinal']

    for col in numeric_columns:
        if col in df.columns:
            df[col] = pd.to_numeric(df[col], errors='coerce')
            logging.info(f"Column {col}: {df[col].isnull().sum()} null values")
        else:
            logging.warning(f"Column '{col}' not found in dataframe.")

    df[numeric_columns] = df[numeric_columns].fillna(df[numeric_columns].median())

    df['age_diff'] = df['winner_age'] - df['loser_age']
    df['service_diff'] = df['w_svpt'] - df['l_svpt']
    df['ace_diff'] = df['w_ace'] - df['l_ace']
    df['df_diff'] = df['w_df'] - df['l_df']
    df['bp_saved_diff'] = df['w_bpSaved'] - df['l_bpSaved']

    numeric_columns.extend(['age_diff', 'service_diff', 'ace_diff', 'df_diff', 'bp_saved_diff'])

    logging.info(f"After feature engineering: {len(df)} rows")
    return df, numeric_columns

def create_vae_model(input_dim, latent_dim=2):
    encoder = tf.keras.Sequential([
        tf.keras.layers.Dense(16, activation='relu', input_shape=(input_dim,)),
        tf.keras.layers.Dense(latent_dim)
    ])

    decoder = tf.keras.Sequential([
        tf.keras.layers.Dense(16, activation='relu', input_shape=(latent_dim,)),
        tf.keras.layers.Dense(input_dim, activation='sigmoid')
    ])

    class VAEModel(tf.keras.Model):
        def __init__(self, encoder, decoder, **kwargs):
            super(VAEModel, self).__init__(**kwargs)
            self.encoder = encoder
            self.decoder = decoder

        def call(self, inputs):
            encoded = self.encoder(inputs)
            decoded = self.decoder(encoded)
            return decoded

    vae = VAEModel(encoder, decoder)
    vae.compile(optimizer='adam', loss='mse')

    return vae

def detect_anomalies(df, threshold=None):
    if threshold is None:
        threshold = df['rank_diff'].abs().quantile(0.85)  # 85th percentile
    logging.info(f"Using anomaly threshold: {threshold}")
    logging.info(f"Years in the data before anomaly detection: {sorted(df['tourney_date'].dt.year.unique())}")

    anomalies = []
    for i, row in df.iterrows():
        rank_diff = row['winner_rank'] - row['loser_rank']
        if abs(rank_diff) > threshold:
            anomalies.append(row)

    anomalies_df = pd.DataFrame(anomalies)

    if anomalies_df.empty:
        logging.warning("No anomalies detected!")
        return anomalies_df

    yearly_counts = anomalies_df['tourney_date'].dt.year.value_counts().sort_index()
    logging.info(f"Anomalies per year:\n{yearly_counts}")

    logging.info(f"Years in the anomalies: {sorted(anomalies_df['tourney_date'].dt.year.unique())}")
    logging.info(f"Total anomalies: {len(anomalies_df)}")

    return anomalies_df

def analyze_anomalies(anomalies):
    anomalies['tourney_name'] = anomalies['tourney_name'].fillna('Unknown')

    anomalies_per_year = anomalies.groupby(anomalies['tourney_date'].dt.year).size()
    anomalies_per_player = pd.concat([anomalies['winner_name'], anomalies['loser_name']]).value_counts()
    anomalies_per_tournament = anomalies['tourney_name'].value_counts()

    grand_slams = anomalies[anomalies['tourney_name'].str.contains('Grand Slam', case=False, na=False)]['tourney_name'].value_counts()
    masters_1000 = anomalies[anomalies['tourney_name'].str.contains('Masters 1000', case=False, na=False)]['tourney_name'].value_counts()

    return anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000

def save_results(anomalies, anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000):
    anomalies.to_csv('anomalies.csv', index=False)
    anomalies_per_year.to_csv('anomalies_per_year.csv')
    anomalies_per_player.to_csv('anomalies_per_player.csv')
    anomalies_per_tournament.to_csv('anomalies_per_tournament.csv')
    grand_slams.to_csv('anomalies_per_grand_slam.csv')
    masters_1000.to_csv('anomalies_per_masters_1000.csv')

    pd.DataFrame(anomalies_per_player.index.tolist(), columns=['Player']).to_csv('most_anomalies_players.csv', index=False)
    pd.DataFrame(anomalies_per_tournament.index.tolist(), columns=['Tournament']).to_csv('most_anomalies_tournaments.csv', index=False)
    pd.DataFrame(grand_slams.index.tolist(), columns=['Grand Slam']).to_csv('most_anomalies_grand_slams.csv', index=False)
    pd.DataFrame(masters_1000.index.tolist(), columns=['Masters 1000']).to_csv('most_anomalies_masters_1000.csv', index=False)

def main():
    logging.info("Starting script...")

    df = load_data()
    logging.info(f"Total rows after loading: {len(df)}")

    df = preprocess_data(df)
    df, numeric_columns = engineer_features(df)
    logging.info(f"Total rows after preprocessing and feature engineering: {len(df)}")

    # Calculate rank difference
    df['rank_diff'] = df['winner_rank'] - df['loser_rank']

    # Log rank difference statistics
    logging.info(f"Rank difference stats:\n{df['rank_diff'].describe()}")
    logging.info(f"Rank difference percentiles:")
    for percentile in [50, 75, 90, 95, 99]:
        logging.info(f"{percentile}th percentile: {df['rank_diff'].abs().quantile(percentile/100)}")

    # Log some statistics about the 'winner_rank' and 'loser_rank' columns
    logging.info(f"Winner rank stats:\n{df['winner_rank'].describe()}")
    logging.info(f"Loser rank stats:\n{df['loser_rank'].describe()}")

    X = df[numeric_columns].copy()
    y = df['winner_rank'] - df['loser_rank']

    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)

    X_train_scaled, X_test_scaled, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

    X_train_scaled = X_train_scaled.astype('float32')
    X_test_scaled = X_test_scaled.astype('float32')

    vae = create_vae_model(X_train_scaled.shape[1])

    logging.info("Model compiled. Starting training...")
    history = vae.fit(X_train_scaled, X_train_scaled, epochs=10, batch_size=32, 
                      validation_data=(X_test_scaled, X_test_scaled), verbose=1)
    logging.info("Model training complete.")

    anomalies = detect_anomalies(df)
    if not anomalies.empty:
        logging.info(f"Number of anomalies: {len(anomalies)}")
        logging.info(f"Anomalies date range: {anomalies['tourney_date'].min()} to {anomalies['tourney_date'].max()}")

        anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000 = analyze_anomalies(anomalies)

        logging.info("Saving results...")
        save_results(anomalies, anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000)
    else:
        logging.warning("No anomalies detected. Skipping analysis and result saving.")

    logging.info("Script execution completed.")

if __name__ == "__main__":
    main()