|
import os |
|
import logging |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import tensorflow as tf |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import StandardScaler |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
def load_data(start_year=2000, end_year=2017): |
|
csv_files = [f'atp_matches_{year}.csv' for year in range(start_year, end_year + 1)] |
|
dataframes = [] |
|
|
|
for file in csv_files: |
|
try: |
|
data = pd.read_csv(file) |
|
logging.info(f"Loaded {file}: {len(data)} rows") |
|
dataframes.append(data) |
|
except FileNotFoundError: |
|
logging.warning(f"File {file} not found.") |
|
continue |
|
|
|
if not dataframes: |
|
raise FileNotFoundError("No CSV files found. Ensure data files are present.") |
|
|
|
combined_df = pd.concat(dataframes, ignore_index=True) |
|
logging.info(f"Total rows after combining all dataframes: {len(combined_df)}") |
|
return combined_df |
|
|
|
def preprocess_data(df): |
|
logging.info(f"Before preprocessing: {len(df)} rows") |
|
df = df.loc[:, ~df.columns.duplicated()] |
|
df = df.drop_duplicates().reset_index(drop=True) |
|
|
|
df['tourney_date'] = pd.to_datetime(df['tourney_date'], format='%Y%m%d', errors='coerce') |
|
df['tourney_date_ordinal'] = df['tourney_date'].apply(lambda x: x.toordinal() if pd.notnull(x) else None) |
|
|
|
df['winner_id'] = df['winner_id'].fillna(df['winner_id'].mode().iloc[0]) |
|
df['loser_id'] = df['loser_id'].fillna(df['loser_id'].mode().iloc[0]) |
|
df['winner_name'] = df['winner_name'].fillna('Unknown') |
|
df['loser_name'] = df['loser_name'].fillna('Unknown') |
|
|
|
logging.info(f"After preprocessing: {len(df)} rows") |
|
logging.info(f"Date range: {df['tourney_date'].min()} to {df['tourney_date'].max()}") |
|
logging.info(f"Years present in the data: {sorted(df['tourney_date'].dt.year.unique())}") |
|
return df |
|
|
|
def engineer_features(df): |
|
numeric_columns = ['winner_rank', 'loser_rank', 'winner_seed', 'loser_seed', |
|
'winner_age', 'loser_age', 'w_svpt', 'l_svpt', 'w_ace', |
|
'l_ace', 'w_df', 'l_df', 'w_bpSaved', 'l_bpSaved', |
|
'tourney_date_ordinal'] |
|
|
|
for col in numeric_columns: |
|
if col in df.columns: |
|
df[col] = pd.to_numeric(df[col], errors='coerce') |
|
logging.info(f"Column {col}: {df[col].isnull().sum()} null values") |
|
else: |
|
logging.warning(f"Column '{col}' not found in dataframe.") |
|
|
|
df[numeric_columns] = df[numeric_columns].fillna(df[numeric_columns].median()) |
|
|
|
df['age_diff'] = df['winner_age'] - df['loser_age'] |
|
df['service_diff'] = df['w_svpt'] - df['l_svpt'] |
|
df['ace_diff'] = df['w_ace'] - df['l_ace'] |
|
df['df_diff'] = df['w_df'] - df['l_df'] |
|
df['bp_saved_diff'] = df['w_bpSaved'] - df['l_bpSaved'] |
|
|
|
numeric_columns.extend(['age_diff', 'service_diff', 'ace_diff', 'df_diff', 'bp_saved_diff']) |
|
|
|
logging.info(f"After feature engineering: {len(df)} rows") |
|
return df, numeric_columns |
|
|
|
def create_vae_model(input_dim, latent_dim=2): |
|
encoder = tf.keras.Sequential([ |
|
tf.keras.layers.Dense(16, activation='relu', input_shape=(input_dim,)), |
|
tf.keras.layers.Dense(latent_dim) |
|
]) |
|
|
|
decoder = tf.keras.Sequential([ |
|
tf.keras.layers.Dense(16, activation='relu', input_shape=(latent_dim,)), |
|
tf.keras.layers.Dense(input_dim, activation='sigmoid') |
|
]) |
|
|
|
class VAEModel(tf.keras.Model): |
|
def __init__(self, encoder, decoder, **kwargs): |
|
super(VAEModel, self).__init__(**kwargs) |
|
self.encoder = encoder |
|
self.decoder = decoder |
|
|
|
def call(self, inputs): |
|
encoded = self.encoder(inputs) |
|
decoded = self.decoder(encoded) |
|
return decoded |
|
|
|
vae = VAEModel(encoder, decoder) |
|
vae.compile(optimizer='adam', loss='mse') |
|
|
|
return vae |
|
|
|
def detect_anomalies(df, threshold=None): |
|
if threshold is None: |
|
threshold = df['rank_diff'].abs().quantile(0.85) |
|
logging.info(f"Using anomaly threshold: {threshold}") |
|
logging.info(f"Years in the data before anomaly detection: {sorted(df['tourney_date'].dt.year.unique())}") |
|
|
|
anomalies = [] |
|
for i, row in df.iterrows(): |
|
rank_diff = row['winner_rank'] - row['loser_rank'] |
|
if abs(rank_diff) > threshold: |
|
anomalies.append(row) |
|
|
|
anomalies_df = pd.DataFrame(anomalies) |
|
|
|
if anomalies_df.empty: |
|
logging.warning("No anomalies detected!") |
|
return anomalies_df |
|
|
|
yearly_counts = anomalies_df['tourney_date'].dt.year.value_counts().sort_index() |
|
logging.info(f"Anomalies per year:\n{yearly_counts}") |
|
|
|
logging.info(f"Years in the anomalies: {sorted(anomalies_df['tourney_date'].dt.year.unique())}") |
|
logging.info(f"Total anomalies: {len(anomalies_df)}") |
|
|
|
return anomalies_df |
|
|
|
def analyze_anomalies(anomalies): |
|
anomalies['tourney_name'] = anomalies['tourney_name'].fillna('Unknown') |
|
|
|
anomalies_per_year = anomalies.groupby(anomalies['tourney_date'].dt.year).size() |
|
anomalies_per_player = pd.concat([anomalies['winner_name'], anomalies['loser_name']]).value_counts() |
|
anomalies_per_tournament = anomalies['tourney_name'].value_counts() |
|
|
|
grand_slams = anomalies[anomalies['tourney_name'].str.contains('Grand Slam', case=False, na=False)]['tourney_name'].value_counts() |
|
masters_1000 = anomalies[anomalies['tourney_name'].str.contains('Masters 1000', case=False, na=False)]['tourney_name'].value_counts() |
|
|
|
return anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000 |
|
|
|
def save_results(anomalies, anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000): |
|
anomalies.to_csv('anomalies.csv', index=False) |
|
anomalies_per_year.to_csv('anomalies_per_year.csv') |
|
anomalies_per_player.to_csv('anomalies_per_player.csv') |
|
anomalies_per_tournament.to_csv('anomalies_per_tournament.csv') |
|
grand_slams.to_csv('anomalies_per_grand_slam.csv') |
|
masters_1000.to_csv('anomalies_per_masters_1000.csv') |
|
|
|
pd.DataFrame(anomalies_per_player.index.tolist(), columns=['Player']).to_csv('most_anomalies_players.csv', index=False) |
|
pd.DataFrame(anomalies_per_tournament.index.tolist(), columns=['Tournament']).to_csv('most_anomalies_tournaments.csv', index=False) |
|
pd.DataFrame(grand_slams.index.tolist(), columns=['Grand Slam']).to_csv('most_anomalies_grand_slams.csv', index=False) |
|
pd.DataFrame(masters_1000.index.tolist(), columns=['Masters 1000']).to_csv('most_anomalies_masters_1000.csv', index=False) |
|
|
|
def main(): |
|
logging.info("Starting script...") |
|
|
|
df = load_data() |
|
logging.info(f"Total rows after loading: {len(df)}") |
|
|
|
df = preprocess_data(df) |
|
df, numeric_columns = engineer_features(df) |
|
logging.info(f"Total rows after preprocessing and feature engineering: {len(df)}") |
|
|
|
|
|
df['rank_diff'] = df['winner_rank'] - df['loser_rank'] |
|
|
|
|
|
logging.info(f"Rank difference stats:\n{df['rank_diff'].describe()}") |
|
logging.info(f"Rank difference percentiles:") |
|
for percentile in [50, 75, 90, 95, 99]: |
|
logging.info(f"{percentile}th percentile: {df['rank_diff'].abs().quantile(percentile/100)}") |
|
|
|
|
|
logging.info(f"Winner rank stats:\n{df['winner_rank'].describe()}") |
|
logging.info(f"Loser rank stats:\n{df['loser_rank'].describe()}") |
|
|
|
X = df[numeric_columns].copy() |
|
y = df['winner_rank'] - df['loser_rank'] |
|
|
|
scaler = StandardScaler() |
|
X_scaled = scaler.fit_transform(X) |
|
|
|
X_train_scaled, X_test_scaled, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42) |
|
|
|
X_train_scaled = X_train_scaled.astype('float32') |
|
X_test_scaled = X_test_scaled.astype('float32') |
|
|
|
vae = create_vae_model(X_train_scaled.shape[1]) |
|
|
|
logging.info("Model compiled. Starting training...") |
|
history = vae.fit(X_train_scaled, X_train_scaled, epochs=10, batch_size=32, |
|
validation_data=(X_test_scaled, X_test_scaled), verbose=1) |
|
logging.info("Model training complete.") |
|
|
|
anomalies = detect_anomalies(df) |
|
if not anomalies.empty: |
|
logging.info(f"Number of anomalies: {len(anomalies)}") |
|
logging.info(f"Anomalies date range: {anomalies['tourney_date'].min()} to {anomalies['tourney_date'].max()}") |
|
|
|
anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000 = analyze_anomalies(anomalies) |
|
|
|
logging.info("Saving results...") |
|
save_results(anomalies, anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000) |
|
else: |
|
logging.warning("No anomalies detected. Skipping analysis and result saving.") |
|
|
|
logging.info("Script execution completed.") |
|
|
|
if __name__ == "__main__": |
|
main() |