File size: 3,718 Bytes
9213b6e 60806d1 372e048 60806d1 372e048 60806d1 9213b6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
language: en
datasets:
- superb
tags:
- speech
- audio
- wav2vec2
- audio-classification
widget:
- example_title: Speech Commands "down"
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_down.wav
- example_title: Speech Commands "go"
src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_go.wav
license: apache-2.0
---
# Wav2Vec2-Base for Keyword Spotting
## Model description
This is a ported version of
[S3PRL's Wav2Vec2 for the SUPERB Keyword Spotting task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands).
The base model is [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
inference time are all crucial. SUPERB uses the widely used
[Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task.
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
false positive.
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ks-keyword-spotting).
## Usage examples
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-ks")
labels = classifier(dataset[0]["file"], top_k=5)
```
Or use the model directly:
```python
import torch
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
from torchaudio.sox_effects import apply_effects_file
effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]]
def map_to_array(example):
speech, _ = apply_effects_file(example["file"], effects)
example["speech"] = speech.squeeze(0).numpy()
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.9623` | `0.9643` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
``` |