对联
Model description
对联AI生成,给出上联,生成下联。
How to use
使用 pipeline 调用模型:
>>> # 调用微调后的模型
>>> senc="燕子归来,问昔日雕梁何处。 -"
>>> model_id="couplet-gpt2-finetuning"
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained(model_id)
>>> model = GPT2LMHeadModel.from_pretrained(model_id)
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator.model.config.pad_token_id = text_generator.model.config.eos_token_id
>>> text_generator( senc,max_length=25, do_sample=True)
[{'generated_text': '燕子归来,问昔日雕梁何处。 - 风 儿 吹 醒 , 叹 今 朝 烟 雨 无'}]
Here is how to use this model to get the features of a given text in PyTorch:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("supermy/couplet")
model = AutoModelForCausalLM.from_pretrained("supermy/couplet")
Training data
此数据集基于couplet-dataset的70w条数据集,在此基础上利用敏感词词库对数据进行了过滤,删除了低俗或敏感的内容,删除后剩余约74w条对联数据。
统计信息
Training procedure
模型:GPT2 训练环境:英伟达16G显卡
bpe分词:"vocab_size"=50000
[INFO|trainer.py:1608] 2022-12-07 02:32:58,307 >> ***** Running training *****
[INFO|trainer.py:1609] 2022-12-07 02:32:58,307 >> Num examples = 260926
[INFO|trainer.py:1610] 2022-12-07 02:32:58,307 >> Num Epochs = 160
[INFO|trainer.py:1611] 2022-12-07 02:32:58,307 >> Instantaneous batch size per device = 96
[INFO|trainer.py:1612] 2022-12-07 02:32:58,307 >> Total train batch size (w. parallel, distributed & accumulation) = 96
[INFO|trainer.py:1613] 2022-12-07 02:32:58,307 >> Gradient Accumulation steps = 1
[INFO|trainer.py:1614] 2022-12-07 02:32:58,307 >> Total optimization steps = 434880
[INFO|trainer.py:1616] 2022-12-07 02:32:58,308 >> Number of trainable parameters = 124439808
[INFO|trainer.py:1637] 2022-12-07 02:32:58,309 >> Continuing training from checkpoint, will skip to saved global_step
[INFO|trainer.py:1638] 2022-12-07 02:32:58,310 >> Continuing training from epoch 93
[INFO|trainer.py:1639] 2022-12-07 02:32:58,310 >> Continuing training from global step 253500
[INFO|trainer.py:1608] 2022-11-30 12:51:36,357 >> ***** Running training *****
[INFO|trainer.py:1609] 2022-11-30 12:51:36,357 >> Num examples = 260926
[INFO|trainer.py:1610] 2022-11-30 12:51:36,357 >> Num Epochs = 81
[INFO|trainer.py:1611] 2022-11-30 12:51:36,357 >> Instantaneous batch size per device = 96
[INFO|trainer.py:1612] 2022-11-30 12:51:36,357 >> Total train batch size (w. parallel, distributed & accumulation) = 96
[INFO|trainer.py:1613] 2022-11-30 12:51:36,357 >> Gradient Accumulation steps = 1
[INFO|trainer.py:1614] 2022-11-30 12:51:36,357 >> Total optimization steps = 220158
[INFO|trainer.py:1616] 2022-11-30 12:51:36,358 >> Number of trainable parameters = 124439808
{'loss': 6.1104, 'learning_rate': 4.9888034956712906e-05, 'epoch': 0.18}
{'loss': 5.5855, 'learning_rate': 4.977448014607691e-05, 'epoch': 0.37}
{'loss': 5.3264, 'learning_rate': 4.966092533544091e-05, 'epoch': 0.55}
......
......
......
{'loss': 2.8539, 'learning_rate': 5.677740531799889e-08, 'epoch': 80.94}
{'train_runtime': 146835.0563, 'train_samples_per_second': 143.937, 'train_steps_per_second': 1.499, 'train_loss': 3.1762605669072217, 'epoch': 81.0}
***** train metrics *****
epoch = 81.0
train_loss = 3.1763
train_runtime = 1 day, 16:47:15.05
train_samples = 260926
train_samples_per_second = 143.937
train_steps_per_second = 1.499
12/02/2022 05:38:54 - INFO - __main__ - *** Evaluate ***
[INFO|trainer.py:2929] 2022-12-02 05:38:54,688 >> ***** Running Evaluation *****
[INFO|trainer.py:2931] 2022-12-02 05:38:54,688 >> Num examples = 1350
[INFO|trainer.py:2934] 2022-12-02 05:38:54,688 >> Batch size = 96
100%|██████████| 15/15 [00:03<00:00, 4.20it/s]
[INFO|modelcard.py:449] 2022-12-02 05:38:59,875 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}, 'metrics': [{'name': 'Accuracy', 'type': 'accuracy', 'value': 0.4447501469723692}]}
***** eval metrics *****
epoch = 81.0
eval_accuracy = 0.4448
eval_loss = 3.2813
eval_runtime = 0:00:03.86
eval_samples = 1350
eval_samples_per_second = 349.505
eval_steps_per_second = 3.883
perplexity = 26.6108
{'loss': 3.0967, 'learning_rate': 1.8027961736571009e-07, 'epoch': 159.49}
{'loss': 3.0922, 'learning_rate': 1.227924944812362e-07, 'epoch': 159.68}
{'loss': 3.0934, 'learning_rate': 6.530537159676233e-08, 'epoch': 159.86}
{'train_runtime': 120967.2394, 'train_samples_per_second': 345.12, 'train_steps_per_second': 3.595, 'train_loss': 1.3456422273861828, 'epoch': 160.0}
***** train metrics *****
epoch = 160.0
train_loss = 1.3456
train_runtime = 1 day, 9:36:07.23
train_samples = 260926
train_samples_per_second = 345.12
train_steps_per_second = 3.595
12/08/2022 12:09:08 - INFO - __main__ - *** Evaluate ***
[INFO|trainer.py:2929] 2022-12-08 12:09:08,522 >> ***** Running Evaluation *****
[INFO|trainer.py:2931] 2022-12-08 12:09:08,522 >> Num examples = 1350
[INFO|trainer.py:2934] 2022-12-08 12:09:08,522 >> Batch size = 96
100%|██████████| 15/15 [00:03<00:00, 4.16it/s]
[INFO|modelcard.py:449] 2022-12-08 12:09:13,448 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}, 'metrics': [{'name': 'Accuracy', 'type': 'accuracy', 'value': 0.433615520282187}]}
***** eval metrics *****
epoch = 160.0
eval_accuracy = 0.4336
eval_loss = 3.3005
eval_runtime = 0:00:03.93
eval_samples = 1350
eval_samples_per_second = 343.164
eval_steps_per_second = 3.813
perplexity = 27.1257
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.