reavis13 / train_valar_v1.yml
superprpogresor's picture
Upload 2 files
d7a32af
raw
history blame
5.35 kB
name: 4x_Valar_v1
use_tb_logger: false
model: sr
scale: 4
gpu_ids: [0]
use_amp: false
use_swa: false
use_cem: false
# Dataset options:
datasets:
train:
name: AdobeMIT5k
mode: aligned
dataroot_HR: [
'../mit5k/hr',
] # high resolution / ground truth images
dataroot_LR: [
'../mit5k/lr',
] # low resolution images
subset_file: null
use_shuffle: true
znorm: false
n_workers: 4
batch_size: 1
virtual_batch_size: 1
preprocess: crop
crop_size: 112
image_channels: 3
# AdaTarget
use_atg: true
atg_start_iter_rel: 0.83
# Color space conversion
# color: 'y'
# color_LR: 'y'
# color_HR: 'y'
# Rotations augmentations:
use_flip: true
use_rot: true
use_hrrot: false
# Presets and on the fly (OTF) augmentations
# Resize Options
lr_downscale: true
lr_downscale_types: [linear, bicubic, realistic]
aug_downscale: 0.5
resize_strat: pre
# Blur degradations
#lr_blur: true
#lr_blur_types: {sinc: 0.05, iso: 0.1, aniso: 0.1}
#iso:
# p: 0.4
# min_kernel_size: 1
# kernel_size: 5
# sigmaX: [0.1, 1.0]
# noise: null
#aniso:
# p: 0.3
# min_kernel_size: 1
# kernel_size: 3
# sigmaX: [0.1, 1.0]
# sigmaY: [0.1, 1.0]
# angle: [0, 180]
# noise: null
#sinc:
# p: 0.2
# min_kernel_size: 1
# kernel_size: 3
# min_cutoff: null
lr_noise: true
lr_noise_types: {JPEG: 3, camera: 1.6, patches: 2.5, clean: 1.5}
hr_unsharp_mask: true
hr_rand_unsharp: 1
camera:
p: 0.25
demosaic_fn: malvar
xyz_arr: D50
rg_range: [0.7, 3.0]
bg_range: [0.7, 3.0]
jpeg:
p: 0.75
min_quality: 30
max_quality: 95
unsharp:
p: 0.12
blur_algo: median
kernel_size: 1
strength: 0.10
unsharp_algo: laplacian
dataroot_kernels: '../mit5k/kernelgan_hr/'
noise_data: '../mit5k/noise_patches_path/'
# pre_crop: true
# hr_downscale: true
# hr_downscale_amt: [2, 1.75, 1.5, 1]
# shape_change: reshape_lr
path:
root: './'
#pretrain_model_G: '../models/4x_RRDB_ESRGAN.pth'
#pretrain_model_Loc: '../models/locnet.pth'
#resume_state: './experiments/4x_Valar_v1/training_state/latest.state'
# Generator options:
network_G:
which_model_G: esrgan
plus: true
gaussian_noise: true
# Discriminator options:
network_D: unet
train:
# Optimizer options:
optim_G: AdamP
optim_D: AdamP
# Schedulers options:
lr_scheme: MultiStepLR
lr_steps_rel: [0.1, 0.2, 0.4, 0.6]
lr_gamma: 0.5
# For SWA scheduler
swa_start_iter_rel: 0.75
swa_lr: 1e-4
swa_anneal_epochs: 10
swa_anneal_strategy: "cos"
# Losses:
pixel_criterion: clipl1 # pixel (content) loss
pixel_weight: 0.25
perceptual_opt:
perceptual_layers: {"conv1_2": 0.1, "conv2_2": 0.1, "conv3_4": 1.0, "conv4_4": 1.0, "conv5_4": 1.0}
use_input_norm: true
perceptual_weight: 1.05
style_weight: 0
feature_criterion: l1 # feature loss (VGG feature network)
feature_weight: 1
cx_type: contextual # contextual loss
cx_weight: 0.3
cx_vgg_layers: {conv_3_2: 1.0, conv_4_2: 1.0}
# hfen_criterion: l1 # hfen
# hfen_weight: 1e-6
# grad_type: grad-4d-l1 # image gradient loss
# grad_weight: 4e-1
#tv_type: normal # total variation
#tv_weight: 1e-5
#tv_norm: 1
#ssim_type: ms-ssim # structural similarity
#ssim_weight: 1
#lpips_weight: 0.6 # perceptual loss
#lpips_type: net-lin
#lpips_net: squeeze
# Experimental losses
# spl_type: spl # spatial profile loss
# spl_weight: 0.1
# of_type: overflow # overflow loss
# of_weight: 0.2
# range_weight: 1 # range loss
# fft_type: fft # FFT loss
# fft_weight: 0.1
color_criterion: color-l1cosinesim # color consistency loss
color_weight: 1.0
# avg_criterion: avg-l1 # averaging downscale loss
# avg_weight: 5
# ms_criterion: multiscale-l1 # multi-scale pixel loss
# ms_weight: 1e-2
# fdpl_type: fdpl # frequency domain-based perceptual loss
# fdpl_weight: 1e-3
# Adversarial loss:
gan_type: vanilla
gan_weight: 1e-1
# freeze_loc: 4
# For wgan-gp:
# D_update_ratio: 1
# D_init_iters: 0
# gp_weigth: 10
# Feature matching (if using the discriminator_vgg_128_fea or discriminator_vgg_fea):
# gan_featmaps: true
# dis_feature_criterion: cb # discriminator feature loss
# dis_feature_weight: 0.01
# Differentiable Augmentation for Data-Efficient GAN Training
# diffaug: true
# dapolicy: 'color,transl_zoom,flip,rotate,cutout'
# Batch (Mixup) augmentations
mixup: true
mixopts: [blend, rgb, mixup, cutmix, cutmixup] # , "cutout", "cutblur"]
mixprob: [0.5, 0.5, 1.0, 1.0, 1.0] #, 1.0, 1.0]
# mixalpha: [0.6, 1.0, 1.2, 0.7, 0.7] #, 0.001, 0.7]
aux_mixprob: 1.0
# aux_mixalpha: 1.2
## mix_p: 1.2
# Frequency Separator
fs: true
lpf_type: average
hpf_type: average
# Other training options:
manual_seed: 0
niter: 4e5
warmup_iter: -1
# overwrite_val_imgs: true
logger:
print_freq: 100
save_checkpoint_freq: 5e3
overwrite_chkp: false