metadata
library_name: transformers
base_model: vasista22/ccc-wav2vec2-base-SUPERB
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: superb-wav2vec2
results: []
superb-wav2vec2
This model is a fine-tuned version of vasista22/ccc-wav2vec2-base-SUPERB on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0003
- Wer: 0.0233
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.0211 | 0.4082 | 50 | 2.0267 | 0.9861 |
1.9496 | 0.8163 | 100 | 1.7685 | 0.9849 |
1.7178 | 1.2245 | 150 | 1.4738 | 0.8240 |
1.3801 | 1.6327 | 200 | 1.1281 | 0.8227 |
1.189 | 2.0408 | 250 | 0.8568 | 0.5723 |
0.9318 | 2.4490 | 300 | 0.6622 | 0.5615 |
0.7042 | 2.8571 | 350 | 0.3612 | 0.3023 |
0.5805 | 3.2653 | 400 | 0.4220 | 0.4606 |
0.4229 | 3.6735 | 450 | 0.1465 | 0.1417 |
0.3913 | 4.0816 | 500 | 0.1350 | 0.1688 |
0.2645 | 4.4898 | 550 | 0.1030 | 0.1421 |
0.2809 | 4.8980 | 600 | 0.0867 | 0.0977 |
0.2344 | 5.3061 | 650 | 0.0901 | 0.1367 |
0.1703 | 5.7143 | 700 | 0.0659 | 0.1246 |
0.1718 | 6.1224 | 750 | 0.0432 | 0.0545 |
0.1442 | 6.5306 | 800 | 0.0636 | 0.0824 |
0.1494 | 6.9388 | 850 | 0.0431 | 0.0448 |
0.1492 | 7.3469 | 900 | 0.0328 | 0.0478 |
0.1185 | 7.7551 | 950 | 0.0376 | 0.0621 |
0.107 | 8.1633 | 1000 | 0.0249 | 0.0241 |
0.1159 | 8.5714 | 1050 | 0.0350 | 0.0396 |
0.1015 | 8.9796 | 1100 | 0.0232 | 0.0334 |
0.1203 | 9.3878 | 1150 | 0.0341 | 0.0780 |
0.0835 | 9.7959 | 1200 | 0.0178 | 0.0458 |
0.1239 | 10.2041 | 1250 | 0.0231 | 0.0543 |
0.0859 | 10.6122 | 1300 | 0.0163 | 0.0289 |
0.0732 | 11.0204 | 1350 | 0.0309 | 0.0494 |
0.063 | 11.4286 | 1400 | 0.0168 | 0.0963 |
0.0693 | 11.8367 | 1450 | 0.0268 | 0.0619 |
0.0649 | 12.2449 | 1500 | 0.0328 | 0.0687 |
0.063 | 12.6531 | 1550 | 0.0173 | 0.0438 |
0.0574 | 13.0612 | 1600 | 0.0118 | 0.0506 |
0.0438 | 13.4694 | 1650 | 0.0101 | 0.0510 |
0.0556 | 13.8776 | 1700 | 0.0064 | 0.0291 |
0.0536 | 14.2857 | 1750 | 0.0098 | 0.0225 |
0.047 | 14.6939 | 1800 | 0.0157 | 0.0251 |
0.0588 | 15.1020 | 1850 | 0.0097 | 0.0291 |
0.0397 | 15.5102 | 1900 | 0.0113 | 0.0541 |
0.0375 | 15.9184 | 1950 | 0.0173 | 0.0531 |
0.0411 | 16.3265 | 2000 | 0.0079 | 0.0394 |
0.0382 | 16.7347 | 2050 | 0.0056 | 0.0340 |
0.0448 | 17.1429 | 2100 | 0.0064 | 0.0287 |
0.0359 | 17.5510 | 2150 | 0.0053 | 0.0261 |
0.032 | 17.9592 | 2200 | 0.0091 | 0.0400 |
0.0295 | 18.3673 | 2250 | 0.0018 | 0.0275 |
0.03 | 18.7755 | 2300 | 0.0034 | 0.0259 |
0.0246 | 19.1837 | 2350 | 0.0280 | 0.0368 |
0.0465 | 19.5918 | 2400 | 0.0099 | 0.0297 |
0.0264 | 20.0 | 2450 | 0.0063 | 0.0111 |
0.025 | 20.4082 | 2500 | 0.0015 | 0.0370 |
0.04 | 20.8163 | 2550 | 0.0020 | 0.0344 |
0.0203 | 21.2245 | 2600 | 0.0055 | 0.0356 |
0.0241 | 21.6327 | 2650 | 0.0024 | 0.0299 |
0.0465 | 22.0408 | 2700 | 0.0022 | 0.0392 |
0.0283 | 22.4490 | 2750 | 0.0026 | 0.0149 |
0.0134 | 22.8571 | 2800 | 0.0015 | 0.0177 |
0.0177 | 23.2653 | 2850 | 0.0041 | 0.0177 |
0.0288 | 23.6735 | 2900 | 0.0011 | 0.0147 |
0.0216 | 24.0816 | 2950 | 0.0034 | 0.0287 |
0.0147 | 24.4898 | 3000 | 0.0046 | 0.0155 |
0.0118 | 24.8980 | 3050 | 0.0021 | 0.0235 |
0.0113 | 25.3061 | 3100 | 0.0012 | 0.0261 |
0.0135 | 25.7143 | 3150 | 0.0006 | 0.0261 |
0.0118 | 26.1224 | 3200 | 0.0008 | 0.0287 |
0.0083 | 26.5306 | 3250 | 0.0004 | 0.0257 |
0.0148 | 26.9388 | 3300 | 0.0006 | 0.0261 |
0.0081 | 27.3469 | 3350 | 0.0005 | 0.0263 |
0.0192 | 27.7551 | 3400 | 0.0004 | 0.0237 |
0.0096 | 28.1633 | 3450 | 0.0004 | 0.0231 |
0.0083 | 28.5714 | 3500 | 0.0003 | 0.0215 |
0.0056 | 28.9796 | 3550 | 0.0004 | 0.0233 |
0.0082 | 29.3878 | 3600 | 0.0003 | 0.0233 |
0.0102 | 29.7959 | 3650 | 0.0003 | 0.0233 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1