|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- dataset |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: sougemi_model |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: dataset |
|
type: dataset |
|
config: discharge |
|
split: test |
|
args: discharge |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.845360824742268 |
|
- name: Recall |
|
type: recall |
|
value: 0.8913043478260869 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8677248677248677 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9533678756476683 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sougemi_model |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the dataset created. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1812 |
|
- Precision: 0.8454 |
|
- Recall: 0.8913 |
|
- F1: 0.8677 |
|
- Accuracy: 0.9534 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 33.33 | 100 | 0.7803 | 0.8966 | 0.8478 | 0.8715 | 0.9663 | |
|
| No log | 66.67 | 200 | 0.3016 | 0.8696 | 0.8696 | 0.8696 | 0.9767 | |
|
| No log | 100.0 | 300 | 0.1623 | 0.9130 | 0.9130 | 0.9130 | 0.9819 | |
|
| No log | 133.33 | 400 | 0.1680 | 0.8454 | 0.8913 | 0.8677 | 0.9637 | |
|
| 0.5801 | 166.67 | 500 | 0.1812 | 0.8454 | 0.8913 | 0.8677 | 0.9534 | |
|
| 0.5801 | 200.0 | 600 | 0.1231 | 0.8947 | 0.9239 | 0.9091 | 0.9715 | |
|
| 0.5801 | 233.33 | 700 | 0.1363 | 0.8617 | 0.8804 | 0.8710 | 0.9663 | |
|
| 0.5801 | 266.67 | 800 | 0.1949 | 0.8333 | 0.8696 | 0.8511 | 0.9508 | |
|
| 0.5801 | 300.0 | 900 | 0.1749 | 0.8163 | 0.8696 | 0.8421 | 0.9534 | |
|
| 0.0607 | 333.33 | 1000 | 0.1817 | 0.8163 | 0.8696 | 0.8421 | 0.9534 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|