ByT5 Finetuned IndoCollex Informal to Formal with Word Formation Tag
This model is a fine-tuned version of google/byt5-small on IndoCollex dataset on informal-formal transformation.
It achieves the following results on the evaluation set:
- Loss: 0.1665
- Cer: 0.1952
- Wer: 0.481
- Word Acc: 0.519
- Gen Len: 7.6914
On test set, it achieves following results :
- CER: 0.2152
- WER: 0.5125
- Word Accuracy: 0.4875
Model description
Inputs are constructed like this tag transformasi kata: %s. kata: %s
For example : tag transformasi kata: sound-alter. kata: sampe
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Word Acc | Gen Len |
---|---|---|---|---|---|---|---|
No log | 1.0 | 93 | 33.2385 | 2.2445 | 2.4 | -1.4 | 19.0 |
No log | 2.0 | 186 | 16.9556 | 2.3667 | 1.081 | -0.081 | 19.0 |
No log | 3.0 | 279 | 5.1125 | 1.3005 | 1.0 | 0.0 | 6.1886 |
No log | 4.0 | 372 | 3.0517 | 0.8676 | 0.9857 | 0.0143 | 8.5029 |
No log | 5.0 | 465 | 1.8607 | 0.4058 | 0.981 | 0.019 | 6.5486 |
17.3258 | 6.0 | 558 | 0.7701 | 0.3769 | 0.9762 | 0.0238 | 6.3486 |
17.3258 | 7.0 | 651 | 0.4911 | 0.3328 | 0.9619 | 0.0381 | 6.48 |
17.3258 | 8.0 | 744 | 0.4172 | 0.3183 | 0.9476 | 0.0524 | 6.6971 |
17.3258 | 9.0 | 837 | 0.3590 | 0.3014 | 0.9095 | 0.0905 | 6.8114 |
17.3258 | 10.0 | 930 | 0.3303 | 0.3039 | 0.8762 | 0.1238 | 7.2686 |
0.696 | 11.0 | 1023 | 0.3030 | 0.2912 | 0.8286 | 0.1714 | 7.2971 |
0.696 | 12.0 | 1116 | 0.2969 | 0.3048 | 0.8429 | 0.1571 | 7.4514 |
0.696 | 13.0 | 1209 | 0.2799 | 0.298 | 0.8238 | 0.1762 | 7.4286 |
0.696 | 14.0 | 1302 | 0.2656 | 0.2946 | 0.8 | 0.2 | 7.4743 |
0.696 | 15.0 | 1395 | 0.2524 | 0.2555 | 0.7619 | 0.2381 | 7.2457 |
0.696 | 16.0 | 1488 | 0.2427 | 0.2564 | 0.7286 | 0.2714 | 7.4 |
0.3225 | 17.0 | 1581 | 0.2317 | 0.2309 | 0.7095 | 0.2905 | 7.2343 |
0.3225 | 18.0 | 1674 | 0.2196 | 0.2258 | 0.6857 | 0.3143 | 7.2971 |
0.3225 | 19.0 | 1767 | 0.2162 | 0.2334 | 0.7095 | 0.2905 | 7.24 |
0.3225 | 20.0 | 1860 | 0.2094 | 0.2224 | 0.7 | 0.3 | 7.2571 |
0.3225 | 21.0 | 1953 | 0.2050 | 0.219 | 0.6714 | 0.3286 | 7.28 |
0.2482 | 22.0 | 2046 | 0.2006 | 0.2148 | 0.6571 | 0.3429 | 7.3314 |
0.2482 | 23.0 | 2139 | 0.1985 | 0.225 | 0.6619 | 0.3381 | 7.3543 |
0.2482 | 24.0 | 2232 | 0.1962 | 0.2156 | 0.6429 | 0.3571 | 7.4114 |
0.2482 | 25.0 | 2325 | 0.1927 | 0.2173 | 0.6381 | 0.3619 | 7.3429 |
0.2482 | 26.0 | 2418 | 0.1943 | 0.2199 | 0.6524 | 0.3476 | 7.3943 |
0.2055 | 27.0 | 2511 | 0.1940 | 0.2122 | 0.6381 | 0.3619 | 7.2571 |
0.2055 | 28.0 | 2604 | 0.1869 | 0.2046 | 0.6143 | 0.3857 | 7.3314 |
0.2055 | 29.0 | 2697 | 0.1849 | 0.1995 | 0.6 | 0.4 | 7.3543 |
0.2055 | 30.0 | 2790 | 0.1833 | 0.2114 | 0.6048 | 0.3952 | 7.3543 |
0.2055 | 31.0 | 2883 | 0.1812 | 0.2054 | 0.5952 | 0.4048 | 7.4457 |
0.2055 | 32.0 | 2976 | 0.1772 | 0.208 | 0.5905 | 0.4095 | 7.52 |
0.1792 | 33.0 | 3069 | 0.1768 | 0.2046 | 0.5905 | 0.4095 | 7.4743 |
0.1792 | 34.0 | 3162 | 0.1756 | 0.2114 | 0.581 | 0.419 | 7.4857 |
0.1792 | 35.0 | 3255 | 0.1735 | 0.2165 | 0.5714 | 0.4286 | 7.52 |
0.1792 | 36.0 | 3348 | 0.1713 | 0.2165 | 0.5714 | 0.4286 | 7.6114 |
0.1792 | 37.0 | 3441 | 0.1726 | 0.2037 | 0.5619 | 0.4381 | 7.4914 |
0.1591 | 38.0 | 3534 | 0.1663 | 0.2063 | 0.5619 | 0.4381 | 7.4629 |
0.1591 | 39.0 | 3627 | 0.1664 | 0.1995 | 0.5524 | 0.4476 | 7.44 |
0.1591 | 40.0 | 3720 | 0.1661 | 0.1986 | 0.5381 | 0.4619 | 7.4457 |
0.1591 | 41.0 | 3813 | 0.1658 | 0.1995 | 0.5333 | 0.4667 | 7.5429 |
0.1591 | 42.0 | 3906 | 0.1646 | 0.191 | 0.519 | 0.481 | 7.48 |
0.1591 | 43.0 | 3999 | 0.1619 | 0.1995 | 0.5381 | 0.4619 | 7.5543 |
0.1427 | 44.0 | 4092 | 0.1641 | 0.1969 | 0.5333 | 0.4667 | 7.4229 |
0.1427 | 45.0 | 4185 | 0.1672 | 0.1944 | 0.5286 | 0.4714 | 7.4743 |
0.1427 | 46.0 | 4278 | 0.1645 | 0.1952 | 0.5381 | 0.4619 | 7.5143 |
0.1427 | 47.0 | 4371 | 0.1667 | 0.1952 | 0.5381 | 0.4619 | 7.4686 |
0.1427 | 48.0 | 4464 | 0.1663 | 0.1961 | 0.5143 | 0.4857 | 7.5543 |
0.1322 | 49.0 | 4557 | 0.1640 | 0.1986 | 0.5333 | 0.4667 | 7.44 |
0.1322 | 50.0 | 4650 | 0.1646 | 0.1935 | 0.4905 | 0.5095 | 7.4857 |
0.1322 | 51.0 | 4743 | 0.1644 | 0.1927 | 0.5143 | 0.4857 | 7.4971 |
0.1322 | 52.0 | 4836 | 0.1637 | 0.2148 | 0.5381 | 0.4619 | 7.5257 |
0.1322 | 53.0 | 4929 | 0.1668 | 0.1978 | 0.5 | 0.5 | 7.5371 |
0.1227 | 54.0 | 5022 | 0.1650 | 0.1995 | 0.519 | 0.481 | 7.5257 |
0.1227 | 55.0 | 5115 | 0.1661 | 0.1952 | 0.4952 | 0.5048 | 7.6 |
0.1227 | 56.0 | 5208 | 0.1642 | 0.2012 | 0.5095 | 0.4905 | 7.6057 |
0.1227 | 57.0 | 5301 | 0.1667 | 0.2037 | 0.5048 | 0.4952 | 7.64 |
0.1227 | 58.0 | 5394 | 0.1650 | 0.1893 | 0.4857 | 0.5143 | 7.52 |
0.1227 | 59.0 | 5487 | 0.1665 | 0.1944 | 0.481 | 0.519 | 7.5657 |
0.1165 | 60.0 | 5580 | 0.1652 | 0.1902 | 0.4905 | 0.5095 | 7.5429 |
0.1165 | 61.0 | 5673 | 0.1649 | 0.1885 | 0.4857 | 0.5143 | 7.5543 |
0.1165 | 62.0 | 5766 | 0.1679 | 0.1893 | 0.4905 | 0.5095 | 7.5371 |
0.1165 | 63.0 | 5859 | 0.1670 | 0.1935 | 0.4905 | 0.5095 | 7.56 |
0.1165 | 64.0 | 5952 | 0.1667 | 0.1944 | 0.4905 | 0.5095 | 7.5714 |
0.1074 | 65.0 | 6045 | 0.1676 | 0.1978 | 0.4952 | 0.5048 | 7.5886 |
0.1074 | 66.0 | 6138 | 0.1653 | 0.2012 | 0.481 | 0.519 | 7.5771 |
0.1074 | 67.0 | 6231 | 0.1667 | 0.1961 | 0.4857 | 0.5143 | 7.5943 |
0.1074 | 68.0 | 6324 | 0.1666 | 0.1927 | 0.4762 | 0.5238 | 7.5886 |
0.1074 | 69.0 | 6417 | 0.1671 | 0.2003 | 0.4952 | 0.5048 | 7.52 |
0.1038 | 70.0 | 6510 | 0.1648 | 0.2046 | 0.4857 | 0.5143 | 7.6 |
0.1038 | 71.0 | 6603 | 0.1653 | 0.1935 | 0.481 | 0.519 | 7.6514 |
0.1038 | 72.0 | 6696 | 0.1663 | 0.1952 | 0.4762 | 0.5238 | 7.6171 |
0.1038 | 73.0 | 6789 | 0.1655 | 0.1995 | 0.481 | 0.519 | 7.6971 |
0.1038 | 74.0 | 6882 | 0.1653 | 0.1969 | 0.4762 | 0.5238 | 7.6857 |
0.1038 | 75.0 | 6975 | 0.1661 | 0.1995 | 0.4762 | 0.5238 | 7.7143 |
0.1004 | 76.0 | 7068 | 0.1649 | 0.2003 | 0.4762 | 0.5238 | 7.7143 |
0.1004 | 77.0 | 7161 | 0.1657 | 0.1969 | 0.4762 | 0.5238 | 7.6971 |
0.1004 | 78.0 | 7254 | 0.1652 | 0.1986 | 0.481 | 0.519 | 7.7029 |
0.1004 | 79.0 | 7347 | 0.1669 | 0.1969 | 0.481 | 0.519 | 7.68 |
0.1004 | 80.0 | 7440 | 0.1665 | 0.2003 | 0.4762 | 0.5238 | 7.68 |
0.0966 | 81.0 | 7533 | 0.1656 | 0.2012 | 0.481 | 0.519 | 7.7143 |
0.0966 | 82.0 | 7626 | 0.1660 | 0.1995 | 0.481 | 0.519 | 7.7143 |
0.0966 | 83.0 | 7719 | 0.1639 | 0.1978 | 0.4762 | 0.5238 | 7.7029 |
0.0966 | 84.0 | 7812 | 0.1654 | 0.1986 | 0.481 | 0.519 | 7.7086 |
0.0966 | 85.0 | 7905 | 0.1661 | 0.1995 | 0.481 | 0.519 | 7.7143 |
0.0966 | 86.0 | 7998 | 0.1662 | 0.1986 | 0.481 | 0.519 | 7.7143 |
0.0958 | 87.0 | 8091 | 0.1660 | 0.1969 | 0.4762 | 0.5238 | 7.7143 |
0.0958 | 88.0 | 8184 | 0.1659 | 0.1944 | 0.481 | 0.519 | 7.6914 |
0.0958 | 89.0 | 8277 | 0.1656 | 0.1952 | 0.481 | 0.519 | 7.6914 |
0.0958 | 90.0 | 8370 | 0.1658 | 0.1952 | 0.481 | 0.519 | 7.6914 |
0.0958 | 91.0 | 8463 | 0.1661 | 0.1952 | 0.481 | 0.519 | 7.6914 |
0.0944 | 92.0 | 8556 | 0.1661 | 0.1961 | 0.481 | 0.519 | 7.6971 |
0.0944 | 93.0 | 8649 | 0.1662 | 0.1944 | 0.481 | 0.519 | 7.6914 |
0.0944 | 94.0 | 8742 | 0.1657 | 0.1961 | 0.481 | 0.519 | 7.7029 |
0.0944 | 95.0 | 8835 | 0.1663 | 0.1944 | 0.481 | 0.519 | 7.6914 |
0.0944 | 96.0 | 8928 | 0.1664 | 0.1944 | 0.481 | 0.519 | 7.6914 |
0.0923 | 97.0 | 9021 | 0.1663 | 0.1952 | 0.481 | 0.519 | 7.6914 |
0.0923 | 98.0 | 9114 | 0.1666 | 0.1952 | 0.481 | 0.519 | 7.6914 |
0.0923 | 99.0 | 9207 | 0.1664 | 0.1952 | 0.481 | 0.519 | 7.6914 |
0.0923 | 100.0 | 9300 | 0.1665 | 0.1952 | 0.481 | 0.519 | 7.6914 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for syafiqfaray/byt5-small-indocollex-informal-to-formal-wordformation
Base model
google/byt5-small