Model description

[More Information Needed]

Intended uses & limitations

[More Information Needed]

Training Procedure

[More Information Needed]

Hyperparameters

Click to expand
Hyperparameter Value
estimators [('rf', RandomForestClassifier(random_state=12345)), ('lr', LogisticRegression(max_iter=1000, random_state=12345)), ('sgd', SGDClassifier(random_state=12345)), ('knn', KNeighborsClassifier()), ('ada', AdaBoostClassifier(random_state=12345))]
flatten_transform True
n_jobs
verbose False
voting hard
weights
rf RandomForestClassifier(random_state=12345)
lr LogisticRegression(max_iter=1000, random_state=12345)
sgd SGDClassifier(random_state=12345)
knn KNeighborsClassifier()
ada AdaBoostClassifier(random_state=12345)
rf__bootstrap True
rf__ccp_alpha 0.0
rf__class_weight
rf__criterion gini
rf__max_depth
rf__max_features sqrt
rf__max_leaf_nodes
rf__max_samples
rf__min_impurity_decrease 0.0
rf__min_samples_leaf 1
rf__min_samples_split 2
rf__min_weight_fraction_leaf 0.0
rf__monotonic_cst
rf__n_estimators 100
rf__n_jobs
rf__oob_score False
rf__random_state 12345
rf__verbose 0
rf__warm_start False
lr__C 1.0
lr__class_weight
lr__dual False
lr__fit_intercept True
lr__intercept_scaling 1
lr__l1_ratio
lr__max_iter 1000
lr__multi_class deprecated
lr__n_jobs
lr__penalty l2
lr__random_state 12345
lr__solver lbfgs
lr__tol 0.0001
lr__verbose 0
lr__warm_start False
sgd__alpha 0.0001
sgd__average False
sgd__class_weight
sgd__early_stopping False
sgd__epsilon 0.1
sgd__eta0 0.0
sgd__fit_intercept True
sgd__l1_ratio 0.15
sgd__learning_rate optimal
sgd__loss hinge
sgd__max_iter 1000
sgd__n_iter_no_change 5
sgd__n_jobs
sgd__penalty l2
sgd__power_t 0.5
sgd__random_state 12345
sgd__shuffle True
sgd__tol 0.001
sgd__validation_fraction 0.1
sgd__verbose 0
sgd__warm_start False
knn__algorithm auto
knn__leaf_size 30
knn__metric minkowski
knn__metric_params
knn__n_jobs
knn__n_neighbors 5
knn__p 2
knn__weights uniform
ada__algorithm deprecated
ada__estimator
ada__learning_rate 1.0
ada__n_estimators 50
ada__random_state 12345

Model Plot

VotingClassifier(estimators=[('rf', RandomForestClassifier(random_state=12345)),('lr',LogisticRegression(max_iter=1000,random_state=12345)),('sgd', SGDClassifier(random_state=12345)),('knn', KNeighborsClassifier()),('ada', AdaBoostClassifier(random_state=12345))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

[More Information Needed]

How to Get Started with the Model

[More Information Needed]

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]

citation_bibtex

to be done

get_started_code

None

model_card_authors

Syreeta, Shraddha, Sravani, Sadhana, Ranjitha

limitations

Not handling logs

model_description

Failure prediction and remediation

Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support