syreeta commited on
Commit
fae6aa6
·
verified ·
1 Parent(s): 2340b4f

... commit message ...

Browse files
Files changed (3) hide show
  1. README.md +257 -0
  2. config.json +40 -0
  3. stacking.pickle +3 -0
README.md ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_format: pickle
8
+ model_file: stacking.pickle
9
+ widget:
10
+ - structuredData:
11
+ NFS_IO_log10_MBps:
12
+ - -3.0
13
+ - -1.4805
14
+ - -3.0
15
+ local_IO_log10_MBps:
16
+ - -0.8381
17
+ - 0.0968
18
+ - -0.9018
19
+ memory_GB:
20
+ - 43.5205
21
+ - 10.3542
22
+ - 88.2232
23
+ network_log10_MBps:
24
+ - -1.1597
25
+ - 0.8827
26
+ - -0.519
27
+ ---
28
+
29
+ # Model description
30
+
31
+ [More Information Needed]
32
+
33
+ ## Intended uses & limitations
34
+
35
+ [More Information Needed]
36
+
37
+ ## Training Procedure
38
+
39
+ [More Information Needed]
40
+
41
+ ### Hyperparameters
42
+
43
+ <details>
44
+ <summary> Click to expand </summary>
45
+
46
+ | Hyperparameter | Value |
47
+ |------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
48
+ | estimators | [('rf', RandomForestClassifier(random_state=12345)), ('lr', LogisticRegression(max_iter=1000, random_state=12345)), ('sgd', SGDClassifier(random_state=12345)), ('knn', KNeighborsClassifier()), ('ada', AdaBoostClassifier(random_state=12345))] |
49
+ | flatten_transform | True |
50
+ | n_jobs | |
51
+ | verbose | False |
52
+ | voting | hard |
53
+ | weights | |
54
+ | rf | RandomForestClassifier(random_state=12345) |
55
+ | lr | LogisticRegression(max_iter=1000, random_state=12345) |
56
+ | sgd | SGDClassifier(random_state=12345) |
57
+ | knn | KNeighborsClassifier() |
58
+ | ada | AdaBoostClassifier(random_state=12345) |
59
+ | rf__bootstrap | True |
60
+ | rf__ccp_alpha | 0.0 |
61
+ | rf__class_weight | |
62
+ | rf__criterion | gini |
63
+ | rf__max_depth | |
64
+ | rf__max_features | sqrt |
65
+ | rf__max_leaf_nodes | |
66
+ | rf__max_samples | |
67
+ | rf__min_impurity_decrease | 0.0 |
68
+ | rf__min_samples_leaf | 1 |
69
+ | rf__min_samples_split | 2 |
70
+ | rf__min_weight_fraction_leaf | 0.0 |
71
+ | rf__monotonic_cst | |
72
+ | rf__n_estimators | 100 |
73
+ | rf__n_jobs | |
74
+ | rf__oob_score | False |
75
+ | rf__random_state | 12345 |
76
+ | rf__verbose | 0 |
77
+ | rf__warm_start | False |
78
+ | lr__C | 1.0 |
79
+ | lr__class_weight | |
80
+ | lr__dual | False |
81
+ | lr__fit_intercept | True |
82
+ | lr__intercept_scaling | 1 |
83
+ | lr__l1_ratio | |
84
+ | lr__max_iter | 1000 |
85
+ | lr__multi_class | deprecated |
86
+ | lr__n_jobs | |
87
+ | lr__penalty | l2 |
88
+ | lr__random_state | 12345 |
89
+ | lr__solver | lbfgs |
90
+ | lr__tol | 0.0001 |
91
+ | lr__verbose | 0 |
92
+ | lr__warm_start | False |
93
+ | sgd__alpha | 0.0001 |
94
+ | sgd__average | False |
95
+ | sgd__class_weight | |
96
+ | sgd__early_stopping | False |
97
+ | sgd__epsilon | 0.1 |
98
+ | sgd__eta0 | 0.0 |
99
+ | sgd__fit_intercept | True |
100
+ | sgd__l1_ratio | 0.15 |
101
+ | sgd__learning_rate | optimal |
102
+ | sgd__loss | hinge |
103
+ | sgd__max_iter | 1000 |
104
+ | sgd__n_iter_no_change | 5 |
105
+ | sgd__n_jobs | |
106
+ | sgd__penalty | l2 |
107
+ | sgd__power_t | 0.5 |
108
+ | sgd__random_state | 12345 |
109
+ | sgd__shuffle | True |
110
+ | sgd__tol | 0.001 |
111
+ | sgd__validation_fraction | 0.1 |
112
+ | sgd__verbose | 0 |
113
+ | sgd__warm_start | False |
114
+ | knn__algorithm | auto |
115
+ | knn__leaf_size | 30 |
116
+ | knn__metric | minkowski |
117
+ | knn__metric_params | |
118
+ | knn__n_jobs | |
119
+ | knn__n_neighbors | 5 |
120
+ | knn__p | 2 |
121
+ | knn__weights | uniform |
122
+ | ada__algorithm | deprecated |
123
+ | ada__estimator | |
124
+ | ada__learning_rate | 1.0 |
125
+ | ada__n_estimators | 50 |
126
+ | ada__random_state | 12345 |
127
+
128
+ </details>
129
+
130
+ ### Model Plot
131
+
132
+ <style>#sk-container-id-4 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: #000;--sklearn-color-text-muted: #666;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
133
+ }#sk-container-id-4 {color: var(--sklearn-color-text);
134
+ }#sk-container-id-4 pre {padding: 0;
135
+ }#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
136
+ }#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
137
+ }#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
138
+ }#sk-container-id-4 div.sk-text-repr-fallback {display: none;
139
+ }div.sk-parallel-item,
140
+ div.sk-serial,
141
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
142
+ }/* Parallel-specific style estimator block */#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
143
+ }#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
144
+ }#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;
145
+ }#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
146
+ }#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
147
+ }#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;
148
+ }/* Serial-specific style estimator block */#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
149
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
150
+ clickable and can be expanded/collapsed.
151
+ - Pipeline and ColumnTransformer use this feature and define the default style
152
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
153
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-4 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
154
+ }/* Toggleable label */
155
+ #sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: flex;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;align-items: start;justify-content: space-between;gap: 0.5em;
156
+ }#sk-container-id-4 label.sk-toggleable__label .caption {font-size: 0.6rem;font-weight: lighter;color: var(--sklearn-color-text-muted);
157
+ }#sk-container-id-4 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
158
+ }#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
159
+ }/* Toggleable content - dropdown */#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
160
+ }#sk-container-id-4 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
161
+ }#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
162
+ }#sk-container-id-4 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
163
+ }#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
164
+ }#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
165
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
166
+ }#sk-container-id-4 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
167
+ }/* Estimator-specific style *//* Colorize estimator box */
168
+ #sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
169
+ }#sk-container-id-4 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
170
+ }#sk-container-id-4 div.sk-label label.sk-toggleable__label,
171
+ #sk-container-id-4 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
172
+ }/* On hover, darken the color of the background */
173
+ #sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
174
+ }/* Label box, darken color on hover, fitted */
175
+ #sk-container-id-4 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
176
+ }/* Estimator label */#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
177
+ }#sk-container-id-4 div.sk-label-container {text-align: center;
178
+ }/* Estimator-specific */
179
+ #sk-container-id-4 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
180
+ }#sk-container-id-4 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
181
+ }/* on hover */
182
+ #sk-container-id-4 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
183
+ }#sk-container-id-4 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
184
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
185
+ a:link.sk-estimator-doc-link,
186
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 0.5em;text-align: center;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
187
+ }.sk-estimator-doc-link.fitted,
188
+ a:link.sk-estimator-doc-link.fitted,
189
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
190
+ }/* On hover */
191
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
192
+ .sk-estimator-doc-link:hover,
193
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
194
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
195
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
196
+ .sk-estimator-doc-link.fitted:hover,
197
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
198
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
199
+ }/* Span, style for the box shown on hovering the info icon */
200
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
201
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
202
+ }.sk-estimator-doc-link:hover span {display: block;
203
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-4 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
204
+ }#sk-container-id-4 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
205
+ }/* On hover */
206
+ #sk-container-id-4 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
207
+ }#sk-container-id-4 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
208
+ }
209
+ </style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>VotingClassifier(estimators=[(&#x27;rf&#x27;, RandomForestClassifier(random_state=12345)),(&#x27;lr&#x27;,LogisticRegression(max_iter=1000,random_state=12345)),(&#x27;sgd&#x27;, SGDClassifier(random_state=12345)),(&#x27;knn&#x27;, KNeighborsClassifier()),(&#x27;ada&#x27;, AdaBoostClassifier(random_state=12345))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-19" type="checkbox" ><label for="sk-estimator-id-19" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>VotingClassifier</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.ensemble.VotingClassifier.html">?<span>Documentation for VotingClassifier</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></div></label><div class="sk-toggleable__content fitted"><pre>VotingClassifier(estimators=[(&#x27;rf&#x27;, RandomForestClassifier(random_state=12345)),(&#x27;lr&#x27;,LogisticRegression(max_iter=1000,random_state=12345)),(&#x27;sgd&#x27;, SGDClassifier(random_state=12345)),(&#x27;knn&#x27;, KNeighborsClassifier()),(&#x27;ada&#x27;, AdaBoostClassifier(random_state=12345))])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><label>rf</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-20" type="checkbox" ><label for="sk-estimator-id-20" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>RandomForestClassifier</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.ensemble.RandomForestClassifier.html">?<span>Documentation for RandomForestClassifier</span></a></div></label><div class="sk-toggleable__content fitted"><pre>RandomForestClassifier(random_state=12345)</pre></div> </div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><label>lr</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-21" type="checkbox" ><label for="sk-estimator-id-21" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>LogisticRegression</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.linear_model.LogisticRegression.html">?<span>Documentation for LogisticRegression</span></a></div></label><div class="sk-toggleable__content fitted"><pre>LogisticRegression(max_iter=1000, random_state=12345)</pre></div> </div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><label>sgd</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-22" type="checkbox" ><label for="sk-estimator-id-22" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SGDClassifier</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.linear_model.SGDClassifier.html">?<span>Documentation for SGDClassifier</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SGDClassifier(random_state=12345)</pre></div> </div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><label>knn</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-23" type="checkbox" ><label for="sk-estimator-id-23" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>KNeighborsClassifier</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.neighbors.KNeighborsClassifier.html">?<span>Documentation for KNeighborsClassifier</span></a></div></label><div class="sk-toggleable__content fitted"><pre>KNeighborsClassifier()</pre></div> </div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><label>ada</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-24" type="checkbox" ><label for="sk-estimator-id-24" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>AdaBoostClassifier</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.ensemble.AdaBoostClassifier.html">?<span>Documentation for AdaBoostClassifier</span></a></div></label><div class="sk-toggleable__content fitted"><pre>AdaBoostClassifier(random_state=12345)</pre></div> </div></div></div></div></div></div></div></div></div>
210
+
211
+ ## Evaluation Results
212
+
213
+ [More Information Needed]
214
+
215
+ # How to Get Started with the Model
216
+
217
+ [More Information Needed]
218
+
219
+ # Model Card Authors
220
+
221
+ This model card is written by following authors:
222
+
223
+ [More Information Needed]
224
+
225
+ # Model Card Contact
226
+
227
+ You can contact the model card authors through following channels:
228
+ [More Information Needed]
229
+
230
+ # Citation
231
+
232
+ Below you can find information related to citation.
233
+
234
+ **BibTeX:**
235
+ ```
236
+ [More Information Needed]
237
+ ```
238
+
239
+ # citation_bibtex
240
+
241
+ to be done
242
+
243
+ # get_started_code
244
+
245
+ None
246
+
247
+ # model_card_authors
248
+
249
+ Syreeta, Shraddha, Sravani, Sadhana, Ranjitha
250
+
251
+ # limitations
252
+
253
+ Not handling logs
254
+
255
+ # model_description
256
+
257
+ Failure prediction and remediation
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "memory_GB",
5
+ "network_log10_MBps",
6
+ "local_IO_log10_MBps",
7
+ "NFS_IO_log10_MBps"
8
+ ],
9
+ "environment": [
10
+ "scikit-learn=1.6.1"
11
+ ],
12
+ "example_input": {
13
+ "NFS_IO_log10_MBps": [
14
+ -3.0,
15
+ -1.4805,
16
+ -3.0
17
+ ],
18
+ "local_IO_log10_MBps": [
19
+ -0.8381,
20
+ 0.0968,
21
+ -0.9018
22
+ ],
23
+ "memory_GB": [
24
+ 43.5205,
25
+ 10.3542,
26
+ 88.2232
27
+ ],
28
+ "network_log10_MBps": [
29
+ -1.1597,
30
+ 0.8827,
31
+ -0.519
32
+ ]
33
+ },
34
+ "model": {
35
+ "file": "stacking.pickle"
36
+ },
37
+ "model_format": "pickle",
38
+ "task": "tabular-classification"
39
+ }
40
+ }
stacking.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ef11319869afae3f280e6be4a7c230c74330b3e836a245801264b252a4eb643
3
+ size 29778597