Uploaded model

  • Developed by: taka-y
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

sample Use

以下に回答コードを記載します。

# -*- coding: utf-8 -*-
"""LoRA_template_unsloth2.ipynb のコピー のコピー

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/14jPqmvNhz8-lIvN1xyWsjFBWW_DYs67W

## 最終課題コンペ用 Fine-tuning テンプレート(unsloth)

最終課題コンペにて Fine-tuning を行ないたい方に向けの Fine-tuning コードです。  
Unsloth を使うことで Google Colab の無料で利用可能な T4 でも動作可能になっています。
環境設定の難易度が高いので、慎重に取り組んでいただければと思います。


### terminalでのconda環境構築
事前にterminalで環境構築の必要があります。Google Colabでは不要です。  

conda環境の構築

wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"

このコマンドではいくつか質問があるので答えて下さい。おそらくインストール先のデフォルトは/root/miniforge3かと思います

bash Miniforge3-$(uname)-$(uname -m).sh

以下、インストール先が/root/miniforge3であることを前提とします

export PATH=/root/miniforge3/bin:$PATH
conda init

ここで一度、terminalを立ち上げ直す必要があります。

以下のリンク先に従い環境を作ります。

https://docs.unsloth.ai/get-started/installation/conda-install

conda create --name unsloth_env python=3.10 pytorch-cuda=12.1 pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers -y
conda activate unsloth_env
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps "trl<0.9.0" peft accelerate bitsandbytes

jupyter notebook用のセットアップ。

conda install -c conda-forge ipykernel
python -m ipykernel install --user --name=unsloth_env --display-name "Python (unsloth_env)"

"""

# Google Colab の場合は上記の環境構築手順を行なわず、単にこのセルから実行していってください。
!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"

# Google Colab のデフォルトで入っているパッケージをアップグレード(Moriyasu さんありがとうございます)
!pip install --upgrade torch
!pip install --upgrade xformers

# notebookでインタラクティブな表示を可能とする(ただし、うまく動かない場合あり)
!pip install ipywidgets --upgrade

# Install Flash Attention 2 for softcapping support
import torch
if torch.cuda.get_device_capability()[0] >= 8:
    !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"

# llm-jp/llm-jp-3-13bを4bit量子化のqLoRA設定でロード。

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from unsloth import FastLanguageModel
import torch
max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は8Bクラスのモデルを扱うためTrue

model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-finetune-2" #Fine-Tuningしたモデルにつけたい名前
# FastLanguageModel インスタンスを作成
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

# SFT用のモデルを用意
model = FastLanguageModel.get_peft_model(
    model,
    r = 32,
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 32,
    lora_dropout = 0.05,
    bias = "none",
    use_gradient_checkpointing = "unsloth",
    random_state = 3407,
    use_rslora = False,
    loftq_config = None,
    max_seq_length = max_seq_length,
)

# Hugging Face Token を指定
# 下記の URL から Hugging Face Token を取得できますので下記の HF_TOKEN に入れてください。
# https://huggingface.co/settings/tokens
HF_TOKEN = "your-token" #@param {type:"string"}

# あるいは Google Colab シークレットを使う場合、左のサイドバーより🔑マークをクリック
# HF_TOKEN という名前で Value に Hugging Face Token を入れてください。
# ノートブックからのアクセスのトグルをオンにし、下記の二行のコードのコメントアウトを外してください。

# from google.colab import userdata
# HF_TOKEN=userdata.get('HF_TOKEN')

from google.colab import drive
drive.mount('/content/drive')

# 学習に用いるデータセットの指定
# 今回はLLM-jp の公開している Ichikara Instruction を使います。データにアクセスするためには申請が必要ですので、使いたい方のみ申請をしてください。
# Ichikara Instruciton を Hugging Face Hub にて公開することはお控えください。

# 下記のリンクから申請を終えた先に Google Drive があり、Distribution20241221_all というフォルダごとダウンロードしてください。
# 今回は「ichikara-instruction-003-001-1.json」を使います。必要であれば展開(!unzip など)し、データセットのパスを適切に指定してください。
# omnicampusの開発環境では取得したデータを左側にドラッグアンドドロップしてお使いください。
# Google Colab の場合も左のサイドバーよりドラッグ&ドロップでアップデートしてください。

# https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/
# 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)

from datasets import load_dataset

dataset = load_dataset("json", data_files="/content/drive/MyDrive/Colab Notebooks/LLM2024コンペ/ichikara-instruction-003-001-1.json")
# パスの指定にご注意ください。アップロードしたファイルを右クリックし、「パスをコピー」をクリック、上記の data_files と合致していることをご確認ください。Omnicampus のディレクトリ構造とは異なるかもしれません。

# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""



"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン)
def formatting_prompts_func(examples):
    input = examples["text"] # 入力データ
    output = examples["output"] # 出力データ
    text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成
    return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す
pass

# # 各データにフォーマットを適用
dataset = dataset.map(
    formatting_prompts_func,
    num_proc= 4, # 並列処理数を指定
)

dataset

# データを確認
print(dataset["train"]["formatted_text"][3])

"""
training_arguments: 学習の設定

  - output_dir:
      -トレーニング後のモデルを保存するディレクトリ

  - per_device_train_batch_size:
      - デバイスごとのトレーニングバッチサイズ

  - per_device_eval_batch_size:
      - デバイスごとの評価バッチサイズ

  - gradient_accumulation_steps:
      - 勾配を更新する前にステップを積み重ねる回数

  - optim:
      - オプティマイザの設定

  - num_train_epochs:
      - エポック数

  - eval_strategy:
      - 評価の戦略 ("no"/"steps"/"epoch")

  - eval_steps:
      - eval_strategyが"steps"のとき、評価を行うstep間隔

  - logging_strategy:
      - ログ記録の戦略

  - logging_steps:
      - ログを出力するステップ間隔

  - warmup_steps:
      - 学習率のウォームアップステップ数

  - save_steps:
      - モデルを保存するステップ間隔

  - save_total_limit:
      - 保存しておくcheckpointの数

  - max_steps:
      - トレーニングの最大ステップ数

  - learning_rate:
      - 学習率

  - fp16:
      - 16bit浮動小数点の使用設定(第8回演習を参考にすると良いです)

  - bf16:
      - BFloat16の使用設定

  - group_by_length:
      -  入力シーケンスの長さによりバッチをグループ化 (トレーニングの効率化)

  - report_to:
      - ログの送信先 ("wandb"/"tensorboard"など)
"""
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset=dataset["train"],
    max_seq_length = max_seq_length,
    dataset_text_field="formatted_text",
    packing = False,
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4,
        num_train_epochs = 1,
        logging_steps = 10,
        warmup_steps = 10,
        save_steps=100,
        save_total_limit=2,
        max_steps=-1,
        learning_rate = 5e-5,  # 学習率を1e-4から5e-5に変更(計算コストを増やさずにモデルの安定性を向上)
        fp16 = not is_bfloat16_supported(),
        bf16 = is_bfloat16_supported(),
        group_by_length=True,
        seed = 3407,
        output_dir = "outputs",
        report_to = "none",
    ),
)

#@title 現在のメモリ使用量を表示
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")

#@title 学習実行
trainer_stats = trainer.train()

# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
import json
datasets = []
with open("/content/drive/MyDrive/Colab Notebooks/LLM2024コンペ/elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

# 学習したモデルを用いてタスクを実行
from tqdm import tqdm

# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

# jsonlで保存
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')

# モデルとトークナイザーをHugging Faceにアップロード。
# 一旦privateでアップロードしてください。
# 最終成果物が決まったらpublicにするようお願いします。
# 現在公開しているModel_Inference_Template.ipynbはunslothを想定していないためそのままでは動かない可能性があります。
model.push_to_hub_merged(
    new_model_id,
    tokenizer=tokenizer,
    save_method="lora",
    token=HF_TOKEN,
    private=True
)

# model.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving
# tokenizer.push_to_hub(new_model_id, token=HF_TOKEN) # Online saving
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for taka-y/llm-jp-3-13b-finetune-2

Finetuned
(1120)
this model