talli96123's picture
End of training
c581b7f verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: meat_calssify_fresh_V_0_5_test
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3333333333333333

meat_calssify_fresh_V_0_5_test

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7620
  • Accuracy: 0.3333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1661 1.0 44 1.1896 0.1667
1.032 2.0 88 1.2389 0.25
1.0784 3.0 132 1.0699 0.25
1.0819 4.0 176 1.2184 0.0833
1.0274 5.0 220 1.4634 0.0833
1.106 6.0 264 1.0843 0.4167
1.1051 7.0 308 1.1752 0.25
1.0964 8.0 352 1.3698 0.1667
1.1467 9.0 396 1.3023 0.1667
0.7936 10.0 440 1.4005 0.25
0.8262 11.0 484 1.2786 0.25
1.1219 12.0 528 1.4314 0.25
0.9306 13.0 572 1.9908 0.1667
1.2061 14.0 616 1.4193 0.25
0.7925 15.0 660 2.1698 0.25
0.104 16.0 704 2.2744 0.25
0.2619 17.0 748 1.7998 0.3333
0.3196 18.0 792 2.0410 0.3333
1.2972 19.0 836 1.4657 0.5
0.7459 20.0 880 2.4774 0.3333
0.4766 21.0 924 2.0181 0.3333
0.1264 22.0 968 2.6095 0.25
0.2541 23.0 1012 2.6884 0.1667
0.179 24.0 1056 2.6612 0.25
0.308 25.0 1100 1.5827 0.5
0.0291 26.0 1144 2.4500 0.3333
0.0773 27.0 1188 2.4238 0.4167
0.0235 28.0 1232 1.8948 0.5
0.1782 29.0 1276 1.7855 0.5
0.0597 30.0 1320 2.7620 0.3333

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1