talli96123's picture
End of training
009d363 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: meat_calssify_fresh_crop_V_0_2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7677419354838709

meat_calssify_fresh_crop_V_0_2

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6201
  • Accuracy: 0.7677

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 100
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1071 1.0 7 1.1020 0.3032
1.0846 2.0 14 1.0824 0.4323
1.0559 3.0 21 1.0499 0.4774
1.0098 4.0 28 1.0008 0.4903
0.9522 5.0 35 0.9723 0.5097
0.9491 6.0 42 0.9122 0.6065
0.8659 7.0 49 0.9418 0.5290
0.8838 8.0 56 0.8785 0.5871
0.856 9.0 63 0.8893 0.5548
0.7896 10.0 70 0.8382 0.6129
0.7409 11.0 77 0.7915 0.6839
0.6992 12.0 84 0.8152 0.6581
0.6652 13.0 91 0.8571 0.6194
0.6149 14.0 98 0.7757 0.6452
0.6121 15.0 105 0.7275 0.7097
0.5469 16.0 112 0.7461 0.6968
0.4911 17.0 119 0.7415 0.7032
0.4495 18.0 126 0.8020 0.6774
0.4634 19.0 133 0.7726 0.6452
0.4244 20.0 140 0.7531 0.6645
0.4263 21.0 147 0.6650 0.7226
0.3785 22.0 154 0.6666 0.7032
0.3922 23.0 161 0.7982 0.6774
0.3366 24.0 168 0.8043 0.6710
0.3169 25.0 175 0.6897 0.7355
0.3292 26.0 182 0.7959 0.6774
0.2988 27.0 189 0.7386 0.7161
0.2965 28.0 196 0.8410 0.6581
0.3015 29.0 203 0.8074 0.6581
0.2373 30.0 210 0.6866 0.7484
0.2659 31.0 217 0.6660 0.7613
0.2421 32.0 224 0.7252 0.6968
0.2386 33.0 231 0.7942 0.6645
0.2526 34.0 238 0.7830 0.6774
0.2117 35.0 245 0.6239 0.7613
0.2409 36.0 252 0.6610 0.7484
0.2263 37.0 259 0.6636 0.7871
0.2105 38.0 266 0.7461 0.7548
0.1881 39.0 273 0.7684 0.6774
0.194 40.0 280 0.7719 0.7032
0.1734 41.0 287 0.7544 0.7226
0.1913 42.0 294 0.7721 0.7032
0.1863 43.0 301 0.7524 0.7097
0.1747 44.0 308 0.8238 0.7032
0.1871 45.0 315 0.6709 0.7613
0.2191 46.0 322 0.6103 0.7484
0.1634 47.0 329 0.6160 0.7806
0.1717 48.0 336 0.6423 0.7419
0.1868 49.0 343 0.6767 0.7484
0.2183 50.0 350 0.6201 0.7677

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0
  • Datasets 2.19.2
  • Tokenizers 0.19.1