talli96123's picture
End of training
e072332 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: meat_calssify_fresh_crop_fixed_V_0_3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.75

meat_calssify_fresh_crop_fixed_V_0_3

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6191
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0921 1.0 621 1.0844 0.3654
1.0438 2.0 1242 1.1755 0.4423
1.1558 3.0 1863 1.0148 0.4487
1.1274 4.0 2484 1.0371 0.5705
1.1992 5.0 3105 1.0598 0.3718
1.2195 6.0 3726 1.3422 0.5256
1.2366 7.0 4347 1.8744 0.4359
1.1302 8.0 4968 1.4699 0.5705
1.1137 9.0 5589 1.3480 0.6154
0.9534 10.0 6210 1.4723 0.5769
1.0269 11.0 6831 1.0999 0.6538
1.0545 12.0 7452 1.2980 0.6090
0.8669 13.0 8073 1.3408 0.6731
0.9571 14.0 8694 1.4879 0.6474
0.8345 15.0 9315 1.4030 0.6603
0.6623 16.0 9936 1.0840 0.7308
0.6014 17.0 10557 1.5054 0.7115
0.5599 18.0 11178 1.1956 0.7628
0.7209 19.0 11799 1.9734 0.5962
0.6289 20.0 12420 1.6165 0.6923
0.429 21.0 13041 1.5766 0.6987
0.628 22.0 13662 1.3948 0.7179
0.5427 23.0 14283 1.7663 0.6795
0.3806 24.0 14904 1.6219 0.6987
0.4443 25.0 15525 1.5065 0.7051
0.3648 26.0 16146 1.5225 0.7308
0.3812 27.0 16767 1.3488 0.75
0.3106 28.0 17388 1.7758 0.6987
0.3725 29.0 18009 1.4190 0.7372
0.4284 30.0 18630 1.6205 0.7115
0.2257 31.0 19251 1.5535 0.7628
0.2869 32.0 19872 1.2077 0.8013
0.3128 33.0 20493 1.9065 0.7051
0.2802 34.0 21114 1.2794 0.7885
0.2647 35.0 21735 1.5823 0.7436
0.3054 36.0 22356 1.3412 0.7756
0.2619 37.0 22977 1.4471 0.7308
0.2289 38.0 23598 1.8176 0.7244
0.1554 39.0 24219 1.5014 0.7628
0.1794 40.0 24840 1.4112 0.7628
0.1835 41.0 25461 1.8688 0.7244
0.2177 42.0 26082 1.2748 0.7821
0.1063 43.0 26703 1.4471 0.7628
0.1798 44.0 27324 1.1872 0.7949
0.1511 45.0 27945 1.3028 0.8077
0.1659 46.0 28566 1.7257 0.7308
0.0917 47.0 29187 1.2314 0.8205
0.1554 48.0 29808 1.4090 0.7821
0.0927 49.0 30429 1.0295 0.8397
0.1188 50.0 31050 1.6191 0.75

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0
  • Datasets 2.19.2
  • Tokenizers 0.19.1